
New Features for Adaptive Server
Version 12.5

Adaptive Server version 12.5 Beta

Document ID: 37753-01-1250-Beta

Last Revised: October 31, 2000

Principal author: Emeryville Technical Publications

Document ID: 37753

This publication pertains to Adaptive Server version 12.5 Beta of the Sybase
database management software and to any subsequent version until otherwise
indicated in new editions or technical notes. Information in this document is
subject to change without notice. The software described herein is furnished under
a license agreement, and it may be used or copied only in accordance with the
terms of that agreement.

Document Orders

To order additional documents, U.S. and Canadian customers should call
Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer
Fulfillment via the above fax number. All other international customers should
contact their Sybase subsidiary or local distributor.

Upgrades are provided only at regularly scheduled software release dates.

Copyright © 1989–1999 by Sybase, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise,
without the prior written permission of Sybase, Inc.

Sybase Trademarks

Sybase, the SYBASE logo, Adaptive Server, APT-FORMS, Certified SYBASE
Professional, the Certified SYBASE Professional logo, Column Design,
ComponentPack, Data Workbench, First Impression, InfoMaker, ObjectCycle,
PowerBuilder, PowerDesigner, Powersoft, Replication Server, S-Designor, SQL
Advantage, SQL Debug, SQL SMART, Transact-SQL, Visual Components,
VisualWriter, and VQL are registered trademarks of Sybase, Inc.

Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server Enterprise Monitor, Adaptive Warehouse, ADA Workbench,
AnswerBase, Application Manager, AppModeler, APT-Build, APT-Edit, APT-
Execute, APT-Library, APT-Translator, APT Workbench, Backup Server, BayCam,
Bit-Wise, ClearConnect, Client-Library, Client Services, CodeBank, Connection
Manager, DataArchitect, Database Analyzer, DataExpress, Data Pipeline,
DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench,
DirectConnect, Distribution Agent, Distribution Director, Embedded SQL, EMS,
Enterprise Application Server, Enterprise Application Studio, Enterprise
Client/Server, EnterpriseConnect, Enterprise Data Studio, Enterprise Manager,
Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, EWA, Formula One, Gateway Manager,
GeoPoint, ImpactNow, InformationConnect, InstaHelp, InternetBuilder, iScript,
Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager,
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI

Database Gateway, media.splash, MetaBridge, MetaWorks, MethodSet,
MySupport, Net-Gateway, NetImpact, Net-Library, Next Generation Learning,
ObjectConnect, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open
Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces,
Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++,
PB-Gen, PC APT-Execute, PC DB-Net, PC Net Library, Power++, Power AMC,
PowerBuilt, PowerBuilt with PowerBuilder, PowerDynamo, PowerJ, PowerScript,
PowerSite, PowerSocket, Powersoft Portfolio, PowerStudio, Power Through
Knowledge, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Replication Agent, Replication Driver, Replication Server Manager, Report-
Execute, Report Workbench, Resource Manager, RW-DisplayLib, RW-Library,
SAFE, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS,
smart.partners, smart.parts, smart.script, SQL Code Checker, SQL Edit, SQL
Edit/TPU, SQL Modeler, SQL Remote, SQL Server, SQL Server/CFT, SQL
Server/DBM, SQL Server Manager, SQL Server SNMP SubAgent, SQL Station,
SQL Toolset, Sybase Central, Sybase Client/Server Interfaces, Sybase
Development Framework, Sybase Financial Server, Sybase Gateways, Sybase
Learning Connection, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle,
Sybase SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server
Architecture, Sybase User Workbench, SybaseWare, SyberAssist, SyBooks, System
10, System 11, the System XI logo, SystemTools, Tabular Data Stream, The
Enterprise Client/Server Company, The Extensible Software Platform, The Future
Is Wide Open, The Learning Connection, The Model for Client/Server Solutions,
The Online Information Center, Translation Toolkit, Turning Imagination Into
Reality, UltraLite, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit
for UniCode, Viewer, VisualSpeller, VisualWriter, WarehouseArchitect, Warehouse
Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web.PB,
Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-
Server, and XP Server are trademarks of Sybase, Inc. 2/99

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or
registered trademarks of their respective companies.

Restricted Rights

Use, duplication, or disclosure by the government is subject to the restrictions set
forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013 for the DOD and as set forth
in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

New Features for Adaptive Server Version 12.5 i

Table of Contents

1. New calculation for total memory in Adaptive Server
Setting the maximum server memory . 1-3

How much memory does Adaptive Server need?. 1-4
Decreasing memory configuration parameters . 1-5
Determining the procedure cache size. 1-5
Determining the default data cache size . 1-6
How does Adaptive Server allocate memory? . 1-6
If you are upgrading . 1-7

Configuration parameter changes . 1-8
Configuration parameters that are now dynamic 1-8
Changed configuration parameter . 1-10

total memory . 1-10
New configuration parameters. 1-10

max total_memory . 1-11
procedure cache size . 1-12
number of engines at startup . 1-13
allocate max shared memory . 1-13
dynamic allocation on demand . 1-14

Deleted configuration parameters . 1-15
New global variable . 1-15
New stored procedure . 1-15

2. New limits for Adaptive Server version 12.5
Varying logical page sizes . 2-17

Building a new master device. 2-18
Upgrading to a server with larger page sizes . 2-20
Viewing the current server limits . 2-20
Backup Server and larger logical page sizes. 2-20
Using bcp with enhanced limits . 2-20
Larger logical page sizes and buffers. 2-20

Number of columns and column size. 2-21
Size of columns containing fixed-length data. 2-21

Variable-length columns in APL tables. 2-22
Variable length columns in DOL tables . 2-23

Organizing columns in DOL tables by size of variable-length columns . 2-
24

Index size . 2-25

ii

Adaptive Server version 12.5 Beta

Simplified units for disk init, disk reinit, create database, and alter database. 2-25
Space allocation . 2-28

Space overhead requirements . 2-30
Number of rows per data page. 2-30

Maximum number of arguments for stored procedures . 2-31
Maximum length of expressions, variables, and arguments in stored procedures . . 2-31

Clients retrieving data with enhanced limits 2-31
Maximum number of expressions in a select statement. 2-32
Number of logins. 2-32
Summary of new limits for version Adaptive Server 12.5 . 2-34

Unchanged limits in version 12.5. 2-35
Changes to the create table command. 2-36
Changes to the alter table command . 2-36
Changes to create index . 2-37
Transact-SQL command updates. 2-37
Client and server compatibility for the new limits . 2-38

print statements . 2-38
If you connect to Adaptive Server with earlier versions Sybase software 2-

38
New functions . 2-38
pagesize() . 2-39
lockscheme() . 2-40
New global variables . 2-40
New dbcc commands . 2-41

3. Getting Started with Java
The Java Runtime Environment . 3-45

Java Classes in the Database . 3-45
Sybase Runtime Java Classes . 3-46
User-Defined Java Classes . 3-46
JDBC Drivers. 3-46

Enabling the Server for Java . 3-47
Disabling the Server for Java. 3-47

Creating Java Classes and JARs . 3-47
Writing the Java Code . 3-47
Compiling the Java Code. 3-48
Saving Classes in a JAR File . 3-48

Installing Java Classes in the Database . 3-48
Using installjava . 3-49

Retaining the JAR File . 3-49

New Features for Adaptive Server Version 12.5 iii

Adaptive Server version 12.5 Beta

Referencing Other Java-SQL Classes . 3-50

4. Using Java Methods as SQL Functions and Stored Procedures
Compliance with SQLJ specifications . 4-52
General issues . 4-53
Examples . 4-54

SQLJ user-defined functions . 4-55
Handling null argument values . 4-58

Handling nulls when creating the function . 4-59
Handling nulls in the function call . 4-60

Deleting a SQLJ function name. 4-61
SQLJ stored procedures . 4-61

Modifying SQL data. 4-63
Writing the Java method . 4-63
Creating the stored procedure . 4-64
Calling the stored procedure . 4-65

Using input and output parameters . 4-65
Writing the Java method . 4-66
Creating the SQLJ procedure . 4-67
Calling the procedure . 4-68

Returning result sets. 4-69
Writing the Java method . 4-70
Creating the SQLJ stored procedure . 4-71
Calling the procedure . 4-72
Deleting a SQLJ stored procedure name. 4-73

Advanced topics . 4-73
Mapping Java and SQL datatypes . 4-73

Implicit or explicit Java method signature . 4-74
Ensuring signature validity . 4-76

Using the command main method. 4-76
Returning result sets. 4-77

SQLJ standards and Sybase proprietary-implementation differences 4-78
 Commands, utilities, and system stored procedures . 4-80
create function . 4-82
drop function . 4-84
create procedure . 4-85
drop procedure . 4-88
installjava. 4-89
remove java . 4-90
sp_depends . 4-91

iv

Adaptive Server version 12.5 Beta

sp_help . 4-93
sp_helpjava. 4-94
sp_helprotect . 4-95

5. XML in the Database
Introduction. 5-97

Source code and Javadoc . 5-98
References . 5-98

An overview of XML. 5-98
A sample XML document . 5-99
XML document types. 5-101
XSL: formatting XML information . 5-103
Character sets and XML data . 5-104
Installing XML in Adaptive Server . 5-105
Setting the CLASSPATH environment variable 5-105
Retaining the JAR file . 5-106
Updating installed classes . 5-106

XML parsers . 5-107
Converting a raw XML document to a parsed version 5-108

Querying XML documents . 5-108
Querying XML documents using xml.XqlDriver. 5-108

Validating your document . 5-111
Saving result sets as parsed files using xml.XqlDriver 5-111

Using XQL . 5-112
Query structures that affect performance. 5-115
Using XQL to develop applications. 5-116
Example JDBC client . 5-117
Example EJB component. 5-118

Accessing XML in SQL . 5-120
Inserting XML documents. 5-121
Updating XML documents . 5-121
Deleting XML documents . 5-121

Storing XML documents . 5-122
Client or server considerations . 5-122
Mapping and storage . 5-123

Advantages and disadvantages of Storage Options 5-123
A simple example for a specific result set . 5-124

The OrderXml class for order documents . 5-124
Creating and populating SQL tables for order data 5-128

Tables for element storage. 5-128

New Features for Adaptive Server Version 12.5 v

Adaptive Server version 12.5 Beta

Tables for document and hybrid storage . 5-129
Using the element storage technique. 5-129

Composing order documents from SQL data 5-129
Decomposing data from an XML order into SQL 5-131

Using the document storage technique . 5-133
Storing XML order documents in SQL columns 5-133
Accessing the elements of stored XML order documents 5-134
Server access to order elements . 5-137
Appending and deleting items in the XML document. 5-137

Using the hybrid storage technique. 5-138
A customizable example for different result sets . 5-139

The ResultSet Document Type . 5-140
The XML DTD for the ResultSetXml document type 5-143

The ResultSetXml class for result set documents. 5-144
Using the element storage technique . 5-147
Composing a ResultSet XML document from the SQL data 5-147
Decomposing the XML ResultSet to SQL data 5-149

Using the document storage technique . 5-151
Storing an XML ResultSet document in a SQL column 5-151
Accessing the columns of stored ResultSet documents 5-152
A server-side script . 5-154
Quantified comparisons in stored ResultSet documents 5-155

Using the hybrid storage technique. 5-158
XML ResultSet documents: invalid XML characters 5-158

Using CDATA sections . 5-158
Column names . 5-161

XML methods . 5-163
parse(String xmlDoc) . 5-164
parse(InputStream xml_document) . 5-165
query(String query, String xmlDoc) . 5-166
query(String query, InputStream xmlDoc) . 5-167
query(String query, SybXmlStream xmlDoc) . 5-168
query(String query, JXml jxml). 5-169
SybXmlStream . 5-170
SybMemXmlStream . 5-171
SybFileXmlStream . 5-172
result . 5-173

6. Unicode Enhancements
New Datatypes Added . 6-175

vi

Adaptive Server version 12.5 Beta

New Configuration Options . 6-175
Enable Surrogate Processing. 6-176
Enable Unicode Normalization . 6-176
Default Unicode Sortorder . 6-176

Functions Supporting the New Datatypes . 6-178
New Functions Added. 6-179

String Concatenation . 6-179
Comparison Operators . 6-180
Relational Expressions . 6-180

7. Unicode Enhancements
Using bcp While Converting Data . 7-181

Copying Data That Changes Length . 7-181

8. Using union operators in select statements
Limitations. 8-184
Error Messages . 8-184

9. Component Integration Services
Enhancements to CIS . 9-185
File System Access . 9-186

Directory Access . 9-186
Recursion through Subordinate Directories . 9-188
File Access . 9-189

Enhanced Mapping of External Logins . 9-191
Union in Views . 9-192
New Limits for Adaptive Server version 12.5 . 9-193

Remote Server Capabilities . 9-194
create new proxy table . 9-195
create existing proxy table . 9-195
create proxy_table. 9-195
alter proxy table . 9-196
select, insert, delete, update . 9-196
RPC Handling . 9-197

LDAP Directory Services . 9-197
Row-Level Access Control . 9-198

New Features for Adaptive Server Version 12.5 vii

Adaptive Server version 12.5 Beta

10. Compressed Archive Support in Adaptive Server
Dumping databases and transaction logs using compress option. 10-199
Loading databases and transaction logs dumped with compress option. 10-201

11. System Table Changes

12. Row-level Access Control
Access rules . 12-207

Syntax for access rules . 12-208
Extended access rule syntax . 12-209
Access rules using Java function and application contexts 12-209
Example scenarios . 12-209
Access rules using Java user-defined functions 12-210

Application contexts . 12-213
Setting permissions for using application context functions 12-213
Creating and maintaining application contexts 12-214

set_appcontext . 12-215
get_appcontext . 12-216
list_appcontext . 12-216
rm_appcontext . 12-217

sys_session system application context. 12-218
Login triggers and scripts . 12-219
Example scenario of row-level access control . 12-220

13. New Features in Open Client/Open Server 12.5
unichar datatype . 13-225

New datatypes and capabilities . 13-226
isql and bcp utilities . 13-227
Limitations. 13-227

New limits in version 12.5 . 13-228
Page size. 13-228

Compatibility . 13-229
Wide tables . 13-229

Capability . 13-229
Changes in application program . 13-230
Wide-table compatibility. 13-233

Implicit Cursors. 13-234
Compatibility . 13-234

viii

Adaptive Server version 12.5 Beta

Limitations. 13-234

New Features for Adaptive Server Version 12.5 1-1

1 New calculation for total memory in
Adaptive Server 1.

This section describes the changes in Adaptive Server version 12.5
for calculating total memory.

Configuration parameters allow various Adaptive Server resources
to be configured. Some of the configurable resources consume
memory. The changes in Adaptive Server version 12.5, effect the
configuration parameters which direct the consumption of memory.

In earlier versions of Adaptive Server, total memory calculated the
memory required by the parameters used to configure memory (that
is, those configuration parameters displayed with sp_configure “Memory
Use”). Adaptive Server first allocated memory to user-configurable
parameters. Any remaining memory was then divided between the
default data cache and the procedure cache, based on the value of the
procedure cache percent parameter.

With Adaptive Server version 12.5, you specify each memory
requirement with an absolute value, using sp_configure. You also
specify the size of the procedure and default data caches in an
absolute value. Resources can then be allocated dynamically during
runtime. The way memory is dynamically allocated depends upon
how you configure allocate max shared memory and dynamic allocation on
demand.

Also, many of the configuration parameters that were static (you had
to restart the server for them to take effect) are now dynamic; you do
not have to restart the server to reconfigure the server’s memory.

You set the maximum amount of memory that Adaptive Server can
use with max total_memory. Resources are then allocated dynamically
during runtime. The procedure and data cache sizes are now
represented in absolute values, rather than in a percentage or a
relative value.

Adaptive Server allocates many memory increases dynamically;
typically, it does not decrease memory dynamically. It is important
that you accurately assess the needs of your system, because you will
need to restart the server if you decrease the memory configuration
parameters.

For a complete description of the changes to configuration
parameters, see “Configuration parameter changes” on page 1-8.

1-2 New calculation for total memory in Adaptive Server

Adaptive Server version 12.5 Beta

Figure 1-1 and Figure 1-2 illustrate the difference between how
Adaptive Server version 12.0 and earlier servers added memory and
how Adaptive Server version 12.5 adds memory:

Figure 1-1: Adding a worker process pool in Adaptive Server version 12.0

In this example, the System Administrator adds a 2MB worker
process pool. However, because the total memory value must remain
the same, the new pool of memory reduces the procedure and data
caches by.5MB and 1.5MB respectively. Figure 2 shows the same
scenario on a 12.5 Adaptive Server:

Adaptive Server binary Adaptive Server binary

Kernel and server structures Kernel and server structures

User connections User connections

Procedure cache
(1.6MB)

Procedure cache
(1.1MB)

Worker process pool
(2MB)

Data caches
(5.3MB) Data caches

(3.8MB)

total memory
is 10MB

total memory
is still 10MB

4.9MB

6.9MB

New Features for Adaptive Server Version 12.5 1-3

Adaptive Server version 12.5 Beta

Figure 1-2: Adding a worker process pool in Adaptive Server version 12.5

In version 12.5, even though the 2MB worker process pool is added
to the server, the procedure and data caches maintain their originally
configured sizes; 1.6MB and 5.3MB, respectively. Because max
total_memory is 5MB larger than the total memory size, it also easily
absorbs the added memory pool. If the new worker process pool
brings the size of the server above the limit of max total_memory, the
command to increase the worker process pool fails. If this happens,
set the value of max total_memory to a value greater than the logical
memory to resolve the problem.

For more information on logical memory, see “How does Adaptive
Server allocate memory?” on page 1-6.

Setting the maximum server memory

The sum of the values of the memory configuration parameters
cannot be set beyond the value of max total_memory. If the amount of
memory to which you set max total_memory is not sufficient, Adaptive

Adaptive Server binary

Kernel and server structures

User connections

Procedure cache
(1.6MB)

Data caches
(5.3MB)

Adaptive Server binary

Kernel and server structures

User connections

Procedure cache
(1.6MB)

Data caches
(5.3MB)

Worker process pool
(2MB)

Worker process pool
(2MB)

total

memory

max total_
memory
is 15MB

server

is 10MBis 10MB

max total_
memory
is 15MB

total
server
memory
is changed
to 12MB

1-4 New calculation for total memory in Adaptive Server

How much memory does Adaptive Server need? Adaptive Server version 12.5 Beta

Server cannot start. sp_configure “total memory” displays the amount of
memory for the current Adaptive Server configuration.

The allocate max shared memory parameter allows you to either allocate
all the memory specified by max total_memory at start-up or to allocate
only the memory required by the logical memory specification
during start-up.

For example, if you set allocate max shared memory to 0 (the default) and
max total_memory to 500MB, but the server configuration only requires
100MB of memory at start-up, Adaptive Server allocates the
remaining 400MB only when it requires the additional memory.
However, if you set allocate max shared memory to 1, Adaptive Server
allocates the entire 500MB when it starts.

The advantage of allocating all the memory at start-up is that there is
no slow time while the server is readjusting for the additional
memory. However, if you do not predict memory growth properly,
and max total_memory is set to a large value, you may be wasting
physical memory. Since you cannot dynamically decrease memory
configuration parameters, in many situations, it is important that
you take into account other memory requirements.

How much memory does Adaptive Server need?

The total memory Adaptive Server requires to start is the sum of all
memory configuration parameters plus the size of the procedure cache
plus the size of the buffer cache, where the size of the procedure cache and
the size of the buffer cache are expressed in round numbers rather than
in percentages.

To determine the total amount of memory Adaptive Server is using
at a given moment, use sp_configure. For example:

sp_configure "total memory"

Parameter Name Default Memory Used Config Value Run Value
 ------------- --------- ----------- ----------- ---------
total memory 33792 48148 24074 23538

The run value for the total memory parameter shows the total logical
memory being consumed by the current Adaptive Server
configuration. This example will provide different values for each
instillation, as no two Adaptive Server’s are likely to be configured in
exactly the same fashion.

New Features for Adaptive Server Version 12.5 1-5

Adaptive Server version 12.5 Beta How much memory does Adaptive Server need?

Decreasing memory configuration parameters

You can dynamically decrease memory configuration parameters
under these conditions:

• You have memory that has been allocated but not used, and

• The dynamic allocation on demand configuration parameter is set to 1.

(If the value of dynamic allocation on demand is 0, you can not decrease
memory configuration parameters dynamically.)

When dynamic allocation on demand is 1, you can decrease memory
configuration parameters dynamically, if there has been no actual
increase in memory use. For example, if the number of user connections is
100, and you decide that 50 is a more appropriate configuration
value, the value of number of user connections may be dynamically
decreased as long as no more than 50 user connections are currently
in use. If the number of user connections is greater than 50, you can
not decrease the memory configuration parameter to 50, because by
doing so, you are attempting to release memory already in use.

Determining the procedure cache size

procedure cache size specifies the size of your procedure cache in 2K
pages. For example:

sp_configure “procedure cache size”

Parameter Name Default Memory Used Config Value Run Value
---------------------- ------- ----------- --------- --------
procedure cache size 3271 8248 20000 20000

The amount of memory used for the procedure cache is 8.248MB. To
set the procedure cache to a different size, issue the following:

sp_configure “procedure cache size”, new_size

This example resets the procedure cache size to 10000 2k pages
(20MB):

sp_configure “procedure cache size”, 10000

➤ Note
The procedure cache percent configuration parameter has been removed

from Adaptive Server 12.5.

1-6 New calculation for total memory in Adaptive Server

How much memory does Adaptive Server need? Adaptive Server version 12.5 Beta

Determining the default data cache size

Both sp_cacheconfig and sp_helpcache display the current default data
cache in MB. For example, the following shows an Adaptive Server
configured with 19.86MB of default data cache:

sp_cacheconfig

Cache Name Status Type Config Value Run Value
------------------- ---------- -------- ------------ ----------
default data cache Active Default 0.00 Mb 19.86Mb

------------ --------
Total 0.00Mb 19.86 Mb

==
Cache: default data cache, Status: Active, Type: Default

Config Size: 0.00 Mb, Run Size: 19.86 Mb
Config Replacement: strict LRU, Run Replacement: strict LRU
Config Partition: 1, Run Partition: 1

IO Size Wash Size Config Size Run Size APF Percent
-------- --------- ------------ ------------ -----------
2 Kb 4066 Kb 0.00 Mb 19.86 Mb 10

To change the default data cache, issue sp_cacheconfig, and specify
“default data cache.” For example, to change the default data cache
to 25MB, enter:

sp_cacheconfig “default data cache”, “25MB”

You must restart Adaptive Server for this change to take effect.

In pre-12.5 versions of Adaptive Server, the size of the default data
cache was determined by the amount of remaining memory
available to the server.

In Adaptive Server 12.5, the default data cache is an absolute value.
During the upgrade process, Adaptive Server sets the default data
cache size to the run value of the default data cache in the
configuration file.

How does Adaptive Server allocate memory?

Memory exists in Adaptive Server as logical or physical memory:

• Logical memory – is the sum of all the configuration parameter
values that you configure using sp_configure, and is the amount of
memory that Adaptive Server requires at the present moment.
This value can go up or down depending on resource needs.

• Physical memory – is the sum of all shared memory segments in
Adaptive Server. That is, physical memory is the amount of
memory on which Adaptive Server is running at a given

New Features for Adaptive Server Version 12.5 1-7

Adaptive Server version 12.5 Beta How much memory does Adaptive Server need?

moment. You can verify this number with the global variable
@@tot_phymem. The value of @@tot_phymem can only increase
because Adaptive Server does not release memory. You can
decrease the amount of physical memory only by changing the
configuration parameters and restarting Adaptive Server.

dynamic allocation on demand is the memory configuration parameter
that allows you to determine whether your memory resources are
allocated to physical memory as soon as they are requested or only as
they are needed. Setting dynamic allocation on demand to 1 will allocate
memory configuration changes as needed, and setting it to 0 will
allocate the total memory requested in the memory configuration
change at the time of the memory reconfiguration.

For example, assume you have set the value of dynamic allocation on
demand to 1. If you change number of user connections to 1000, the logical
memory equals 1000 multiplied by the amount of memory per user.
If the amount of memory per user is 112K, then the logical memory
per user is 112MB (1000 x 112).

This is the maximum amount of memory that the number of user
connections configuration parameter is allowed to use. However, if
only 500 users are connected to the server, the amount of physical
memory used by the number of user connections parameter is 56MB (500
x 112).

Now assume the value of dynamic allocation on demand is 0; when you
change number of user connections to 1000, all 112MB will be converted
to physical memory, because all user connection resources are
configured immediately.

Optimally, you should organize Adaptive Server’s memory so that
the amount of physical memory is less than the amount of logical
memory, which is less than the max total_memory. This can be achieved,
in part, by setting the value of dynamic allocation on demand to 1, and
setting the value of allocate max shared memory to 0.

If you are upgrading

During the upgrade process, pre-12.5 Adaptive Server configuration
values for total memory, procedure cache percent, and min online engines are
used to calculate the new values for procedure cache size and number of
engines at startup. Adaptive Server computes the size of the default
data cache during the upgrade and writes this value to the
configuration file. If the computed sizes of the data cache or
procedure cache are less than the default sizes, they are reset to the

1-8 New calculation for total memory in Adaptive Server

Configuration parameter changes Adaptive Server version 12.5 Beta

default. During the upgrade, max total_memory is set to the value of total
memory specified in the configuration file.

If this memory is insufficient, Adaptive Server does not start and the
following error message is printed to the error log:

The value of the ‘max total_memory’ parameter
(%ID) defined in the configuration file is not
high enough to set the other parameter values
specified in the configuration file. ‘max
total_memory’ should be greater than the logical
memory (%ID).

You should reset the value of max total_memory to comply with the
resource requirements.

You can use the verify option of sp_configure to verify any changes you
make to the configuration file without having to restart Adaptive
Server. The syntax is:

sp_configure “configuration file”, 0, “verify”,
“ full_path_to_file ”

See the System Administration Guide for more information.

Configuration parameter changes

The following sections describe the configuration parameter changes
for Adaptive Server version 12.5.

Configuration parameters that are now dynamic

In earlier versions of Adaptive Server, the following configuration
parameters were static, but now dynamically change Adaptive
Server‘s use of shared memory:

• additional network memory

• audit queue size

• cpu grace time

• deadlock pipe max messages

• default database size

• default fill factor percent

• disk i/o structures

• errorlog pipe max messages

• max cis remote connections

New Features for Adaptive Server Version 12.5 1-9

Adaptive Server version 12.5 Beta Configuration parameter changes

• memory per worker process

• number of alarms

• number of aux scan descriptors

• number of devices

• number of dtx participants

• number of java sockets

• number of large i/o buffers

• number of locks

• number of mailboxes

• number of messages

• number of open databases

• number of open indexes

• number of open objects

• number of pre-allocated extents

• number of user connections

• number of worker processes

• open index hash spinlock ratio

• open index spinlock ratio

• open object spinlock ratio

• partition groups

• partition spinlock ratio

• permission cache entries

• plan text pipe max messages

• print recovery information

• process wait events

• size of global fixed heap

• size of process object heap

• size of shared class heap

• size of unilib cache

• sql text pipe max messages

• statement pipe max messages

• tape retention in days

• time slice

1-10 New calculation for total memory in Adaptive Server

Configuration parameter changes Adaptive Server version 12.5 Beta

• user log cache spinlock ratio

Changed configuration parameter

In earlier versions, total memory described the amount of memory in
2K units, which Adaptive Server allocated from the operating
system. Because the memory allocation is dynamic for Adaptive
Server version 12.5, the total memory parameter specifies only the
logical memory required for the current configuration requirements
of Adaptive Server.

total memory

Displays the logical memory for the current configuration of
Adaptive Server. The logical memory is the amount of memory that
Adaptive Server’s current configuration uses. You cannot use total
memory to set any of the memory configuration parameters.

New configuration parameters

The following configuration parameters have been added to
Adaptive Server version 12.5.

Summary information

Name in pre-11.0 release memory

Default value N/A

Range of values N/A

Status Read-only

Display level Intermediate

Required role System Administrator

New Features for Adaptive Server Version 12.5 1-11

Adaptive Server version 12.5 Beta Configuration parameter changes

max total_memory

Specifies the maximum amount of physical memory that you can
configure Adaptive Server to allocate. max total_memory must be
greater than the logical total memory consumed by the current
configuration of Adaptive Server.

There is no performance penalty for configuring Adaptive Server to
use the maximum memory available to it on your computer.
However, assess the other memory needs on your system, or
Adaptive Server may not be able to acquire enough memory to start.

See Chapter 18, “Configuring Memory,” for instructions on how to
maximize the amount of max total_memory for Adaptive Server.

If Adaptive Server cannot start

Adaptive Server must have the amount of memory available that is
specified by max total_memory. If the memory is not available, Adaptive
Server will not start. If this occurs, reduce the memory requirements
for Adaptive Server by manually changing the value of max
total_memory in the server’s configuration file. You may also need to
reduce the values for other configuration parameters that require
large amounts of memory. Then restart Adaptive Server to use the
memory needed by the new values. If Adaptive Server fails to start
because the total of other configuration parameter values is higher
than the max total_memory value, see Chapter 18, “Configuring
Memory,” for information about configuration parameters that use
memory.

Summary information

Name in pre-11.0 release N/A

Default value Platform-dependent

Range of values Platform-dependent
minimum – 2147483647

Status Dynamic

Display level Basic

Required role System Administrator

1-12 New calculation for total memory in Adaptive Server

Configuration parameter changes Adaptive Server version 12.5 Beta

procedure cache size

Specifies the size of the procedure cache in 2K pages. Adaptive
Server uses the procedure cache while running stored procedures. If
the server finds a copy of a procedure already in the cache, it does not
need to read it from the disk. Adaptive Server also uses space in the
procedure cache to compile queries while creating stored
procedures.

Since the optimum value for procedure cache size differs from
application to application, resetting it may improve Adaptive
Server’s performance. For example, if you run many different
procedures or ad hoc queries, your application will use the
procedure cache more heavily, so you may want to increase this
value.

If you are upgrading

In earlier versions of Adaptive Server, the size of the procedure cache
was based on a percentage of the available memory. If you are
upgrading to version 12.5, the procedure cache size is set to the size
of the procedure cache determined at run time during the upgrade
process. Unlike pre-12.5 Adaptive Server, this parameter is
dynamically configurable subject to the amount of max total_memory
currently configured.

Summary information

Name in pre-11.0 release N/A

Default value 3271

Range of values 3271 – 2147483647

Status Dynamic

Display level Basic

Required role System Administrator

New Features for Adaptive Server Version 12.5 1-13

Adaptive Server version 12.5 Beta Configuration parameter changes

number of engines at startup

Specifies the number of engines Adaptive Server brings online at
start-up. You cannot set number of engines at start-up to a number
greater than the number of CPUs on your machine.

allocate max shared memory

allocate max shared memory determines whether Adaptive Server
allocates all the memory specified by max total_memory at start-up or
only the amount of memory the configuration parameter indicates.

By setting allocate max shared memory to 0, you ensure that Adaptive
Server uses only the amount of shared memory required by the
current configuration. When you set allocate max shared memory to 0,
Adaptive Server allocates only the amount of memory required by
the configuration parameters at start-up, which will be a smaller
value than max total_memory. If you change the configuration
parameters (for example if you increase the number of user connections,)
Adaptive Server then increases the amount of physical memory used

Summary information

Name in pre-11.0 release N/A

Default value 1

Range of values 1 – number of CPUs on
machine

Status Static

Display level Basic

Required role System Administrator

Summary information

Name in pre-11.0 release N/A

Default value 0

Range of values 0,1

Status Dynamic

Display level Basic

Required role System Administrator

1-14 New calculation for total memory in Adaptive Server

Configuration parameter changes Adaptive Server version 12.5 Beta

by the amount of memory required to increase the value of number of
user connections.

If you set allocate max shared memory to 1, Adaptive Server allocates all
the memory specified by max total_memory at start-up. If allocate max
shared memory is 1, and if you increase max total_memory, additional
shared memory elements are obtained. This means that Adaptive
Server will always have the memory required for any memory
configuration changes you make and there is no slow time while the
server readjusts for additional memory. However, if you do not
predict memory growth accurately, and max total_memory is set to a
large value, you may waste physical memory.

dynamic allocation on demand

Determines when memory is allocated for changes to dynamic
memory configuration parameters.

If you set dynamic allocation on demand to 1, memory is allocated only as
it is needed. That is, if you change the configuration for number of user
connections from 100 to 200, the memory for each user is added only
when the user connects to the server. Adaptive Server continues to
add memory until it reaches the new maximum for user connections.

If dynamic allocation on demand is set to 0, all the memory required for
any dynamic configuration changes is allocated immediately. That is,
when you change the number of user connections from 100 to 200,
the memory required for the extra 100 user connections is
immediately allocated.

Summary information

Name in pre-11.0 release N/A

Default value 1

Range of values 0, 1

Status Dynamic

Display level Basic

Required role System Administrator

New Features for Adaptive Server Version 12.5 1-15

Adaptive Server version 12.5 Beta New global variable

Deleted configuration parameters

The following configuration parameters have been removed from
Adaptive Server version 12.5:

• procedure cache percent

• max cis remote servers

• max engine freelocks

• max roles enabled per user

• min online engines

• number of languages in cache

• freelock transfer block size

• engine adjust interval

New global variable

Adaptive Server version 12.5 adds the @@tot_physmem global
variable. @@tot_physmem returns the current amount of shared
memory used by Adaptive Server. The amount of shared memory is
reported in number of pages.

To run @@tot_physmem, enter:

select @@tot_physmem

New stored procedure

The following stored procedure has been added to Adaptive Server
12.5.

sp_engine

Function

Enables you to bring an engine online or offline.

Syntax

sp_engine {“online” | offline} [, engine_id]

1-16 New calculation for total memory in Adaptive Server

New stored procedure Adaptive Server version 12.5 Beta

Parameters

“online” – bring an engine online. Online must be specified within
quotations as it is a reserved key word.

offline – take an engine offline.

engine_id – the ID of the engine you are bringing offline.

Comments

• You can bring an engine online only if max online engines is greater
than the current number of engines that are online, and if enough
CPU is available to support the additional engine.

• You do not need to specify the engine_id to bring an engine
online.

• You cannot take engine number 0 offline.

Permissions

You need a System Administrator role to bring engines online or
offline.

New Features for Adaptive Server Version 12.5 2-17

2 New limits for Adaptive Server
version 12.5 2.

Adaptive Server version 12.5 includes increases in the following
limits:

• Page size

• Number of columns per table, column, row, and index size

• Number of arguments for stored procedures

• Length of expressions

• Number of expressions in a select statement

• Number of logins per server; number of users per database

See Table 2-10 on page 34 and Table 2-11 on page 35 for a summary of
the new limits for Adaptive Server version 12.5.

Varying logical page sizes

➤ Note
Adaptive Server version 12.5 does not use the buildmaster binary to build the

master device. Instead, Sybase has incorporated buildmaster functionality in

the dataserver binary.

The dataserver command allows you to create master devices and
databases with logical pages of size 2K, 4K, 8K, or 16K. Larger logical
pages allow you to create larger rows, which can improve your
performance because Adaptive Server accesses more data each time
it reads a page. For example, a single 16K page can hold 8 times the
amount of data as a 2K page, an 8K page holds 4 times as much data
as a 2K page, and so on.

The logical page size is a server-wide setting; you cannot have
databases with varying size logical pages within the same server. All
tables are appropriately sized so that the row size is no greater than
the current page size of the server. That is, rows cannot span multiple
pages.

2-18 New limits for Adaptive Server version 12.5

Varying logical page sizes Adaptive Server version 12.5 Beta

Building a new master device

This section describes the process for creating a new master device
using the buildmaster utility. The master device is built during two
phases; the build phase and the boot phase. During the build phase
the master device is built and booted, but it is then shut down again.
You must then manually reboot the server for the boot phase. After
this you can start, stop, and restart Adaptive Server whenever
necessary without having to rebuild the master device.

The memory for the master device is measured in three types of
memory:

• Logical memory – These are the pages that the database objects
are built with. All databases and all database objects use the same
logical page size. Logical page sizes come in sizes of 2K, 4K, 8K,
and 16K.

• Virtual memory – This is the physical page allocation at the disk
level, and is always done in 2K pages. All disk I/O is done in this
virtual page size.

• Memory page size – The memory allocated and managed within
Adaptive Server., and is always measured in 2K pages.

The syntax to create a new master device withdataserver is:

dataserver -d <master device name>
. . .
[-I interfaces_file_name]
[-b master_device_size [k|K|m|M|g|G]
[-z logical_page_size [k|K]
[[-forcebuild]
-c path_to_file
[-n controller_number]
[-w database_name_to_rewrite]
-h

Where:

• I specifies the full path to the interfaces file.

• b indicates the size of the master device (for example, 3.2G).

• z specifies the logical page size.

• forcebuild overrides checks to make sure that dataserver is not
overwriting an existing master device.

• c specifies the configuration file.

• w indicates the name of the master device you are rewriting.

New Features for Adaptive Server Version 12.5 2-19

Adaptive Server version 12.5 Beta Varying logical page sizes

• and h prints the syntax for the dataserver command.

➤ Note
-b specifies the number virtual pages used to create the master device. The

size of a virtual page is always 2K. -z specifies the logical (database) page

size for the server, and is always 2K, 4K, 8K, or 16K.

If you specify a configuration file with the -c parameter, make sure all
the parameters in this configuration file are compatible before you
boot the server. If some of the configuration parameters are
incompatible, the server may not boot. To avoid this, do not specify a
configuration file when you build the master device. buildmaster uses
all default settings if when you do not specify a configuration file.

To start an existing Adaptive Server, issue the dataserver command
without the -b and -z options.

For example, to:

• Build a master device of the default logical page size (2K), creates
a master device large enough to create all required system
databases, enter:

dataserver -d /sybase/masterdb.dat -b

• Start Adaptive Server with an existing master device, enter:

dataserver -d /sybase/masterdb.dat

• Build a 100MB master device using the default logical page size
(2K) and starts the server, enter:

dataserver -d /sybase/masterdb.dat -b100M

• Build a 100MB master device with a logical page size of size 4K,
enter:

dataserver -d /sybase/masterdb.dat -b100M -z4K

• Build a master device of 102,400 virtual pages of size 2K, and
create databases using a logical page size of 8K, and boot the
server. If the total requested space (102,400 x 2K 200 MB) is
insufficient to build all the required system databases using the
specified logical page size, then an error message is reported, and
the process fails.

dataserver -d /work1/masterdb.dat -b 102400 -z8K

2-20 New limits for Adaptive Server version 12.5

Varying logical page sizes Adaptive Server version 12.5 Beta

Upgrading to a server with larger page sizes

Adaptive Servers previous to version 12.5 used 2K logical page sizes.
You can only upgrade existing installations to servers using the 2K
logical page size. You cannot change an installation’s page size by
upgrading. That is, if your current Adaptive Server uses 2K logical
pages, you can upgrade only to an Adaptive Server that uses 2K
logical pages.

Viewing the current server limits

To determine the size of your servers logical page size, run dbcc
serverlimis. For example:

dbcc serverlimits

See “New dbcc commands” on page 2-41 for more information

Backup Server and larger logical page sizes

You can dump and load databases and transaction logs only from
Adaptive Servers that share the same logical page size. For example,
you cannot load a dump from an Adaptive Server that uses 2K
logical pages into an Adaptive Server that uses 16K logical pages.

➤ Note
All existing dumps from previous to version 12.5 use a logical page size of

2K, so you can load these dumps into an Adaptive Server version 12.5 that

uses a logical page size of 2K.

Using bcp with enhanced limits

You can use bcp version 12.5 to bulk load and bulk unload data with
the enhanced limits in version 12.5. For example, you can use the
version 12.5 bcp to copy out data that includes wide rows and
columns.

Larger logical page sizes and buffers

Because buffers are sized in logical pages, if Adaptive Server uses
larger logical pages, the buffers may also be larger. For example, an

New Features for Adaptive Server Version 12.5 2-21

Adaptive Server version 12.5 Beta Number of columns and column size

Adaptive Server that uses 2K logical page size uses a large I/O mass
of 16K (eight logical pages), but an Adaptive Server with 16K logical
page size uses a large I/O mass of 128K (also eight logical pages).

Number of columns and column size

The maximum number of columns you can create in a table is:

• 1024 for fixed-length columns in both all-pages locked (APL) and
data-only locked (DOL) tables

• 254 for variable-length columns in an APL table.

• 1024 for variable-length columns in an DOL table

The maximum size of a column depends on:

• Whether the table includes any variable- or fixed-length columns.

• The logical page size of the database. For example, in a database
with 2K logical pages, the maximum size of a column in an APL
table can be as large as a single row, about 1962 bytes, less the row
format over heads. Similarly, for a 4K page, the maximum size of
a column in a APL table can be as large as 4010 bytes, less the row
format over heads. See Table 2-1 for more information.

• If you attempt to create a table that is greater than the limits of the
logical page size, create table issues an error message.

Size of columns containing fixed-length data

Columns with fixed length data (for example, char, binary, and so on)
have the following maximum sizes:

Table 2-1: Maximum length of fixed length columns in APL and DOL tables

Locking
scheme Page size Max. row size Max. column length

All-pages
locked
(APL) tables

2K (2048 bytes) 1962 1960 bytes

4K (4096 bytes) 4010 4008 bytes

8K (8192 bytes) 8106 8104 bytes

16K (16384 bytes) 16298 16296 bytes

2-22 New limits for Adaptive Server version 12.5

Number of columns and column size Adaptive Server version 12.5 Beta

The maximum size of a fixed-length column in a DOL table with a
16K logical page size depends on whether the table contains
variable-length columns. The maximum possible starting offset of a
variable-length column is 8192. If the table has any variable length
columns, the sum of the fixed-length portion of the row, plus row
over heads, cannot exceed 8191 bytes, and the maximum possible
size of all the fixed-length columns is restricted to 8183 bytes, when
the table contains any variable-length columns.

Variable-length columns in APL tables

Variable-length columns (for example, varchar, varbinary, and so on) in
an APL table have the following minimum row overhead for each
row:

• 2 bytes for the initial row overhead.

• 2 bytes for the row length.

• 2 bytes for the column-offset table at the end of the row. This is
always n + 1 bytes, where n is the number of variable-length
columns in the row.

Data-only
locked (DOL)
tables

2K (2048 bytes) 1964 1958 bytes

4K (4096 bytes) 4012 4006 bytes

8K (8192 bytes) 8108 8102 bytes

16K (16384 bytes) 16300 16294 bytes
if the table does not
include any variable
length columns

16K (16384 bytes) 16300
(subject to a
max start
offset of
varlen col =
8191)

8191 - 6 - 2 = 8183 bytes
if the table includes at
least one variable-length
column.

(This size includes 6
bytes for the row
overhead and 2 bytes for
the row length field.)

Table 2-1: Maximum length of fixed length columns in APL and DOL tables

Locking
scheme Page size Max. row size Max. column length

New Features for Adaptive Server Version 12.5 2-23

Adaptive Server version 12.5 Beta Number of columns and column size

So, a single-column table has an overhead of at least six bytes, plus
additional overhead for the adjust table. The column size is the sum
of the column length, the number of bytes for the adjust table, and
the six-byte overhead. This is described in Table 2-2.

Table 2-2: Maximum size of variable length columns in an APL table

Variable-length columns that exceed the logical page size

If your table uses 2K logical pages, you can create some variable
length columns whose total row length exceeds the maximum row
length for a 2K page size. This allows you to create tables where
some, but not all, variable length columns contain the maximum
possible size. However, when you issue create table, you receive a
warning message that says the resulting row size could exceed the
maximum possible row size, causing a future insert or update to fail.

For example., on a server that uses 2K pages, if you create a table that
contains a variable-length column with a length of 1975 bytes, Adaptive
Server creates the table and the column. However, if you attempt to insert
data of this length into this column, the data’s length exceeds the maximum
length of the row, which is 1962 bytes, as listed in Table 2-2.

Variable length columns in DOL tables

For a single, variable-length column in a DOL table, the minimum
row overhead for each row is:

• 6 bytes for the initial row overhead.

• 2 bytes for the row length.

• 2 bytes for the column offset table at the end of the row. Each
column offset entry is 2 bytes. There are n such entries, where n is
the number of variable-length columns in the row.

The total overhead is 10 bytes. There is no adjust table for DOL rows.
The actual variable-length column size is:

Page size Max. row
length

Max. column
length

2k (2048 bytes) 1962 1948

4k (4096 bytes) 4010 3988

8K (8192 bytes) 8196 8158

16K (16384 bytes) 16298 16228

2-24 New limits for Adaptive Server version 12.5

Number of columns and column size Adaptive Server version 12.5 Beta

The actual column length + 10 bytes of overhead <= maximum row length

This is illustrated in Table 2-3:

Table 2-3: Maximum size of variable-length columns in a DOL table

DOL tables must have an offset of less than 8192 bytes. For example,
for a server that uses 8K pages, the following insert fails because the
offset adds up to more than 8192 bytes:

create table t1(
c1 int not null,
c2 varchar(5000) not null
c3 varchar(4000) not null
c4 varchar(10) not null

... more fixed length columns

cvarlen varchar(nnn)) lock datarows

The offset for columns c2, c3, and c4 is 9010, so the entire insert fails.

Organizing columns in DOL tables by size of variable-length columns

For DOL tables that use variable-length columns, arrange the
columns so the longest columns are placed towards the end of the
table definition. This allows you to create tables with much larger
rows than is possible if the large column appears at the beginning of
the table definition. For instance, in a 16K page server, the following
table definition is acceptable:

create table t1 (
c1 int not null,
c2 varchar(1000) null,
c3 varchar(4000) null,
c4 varchar(9000) null) lock datarows

Page size Max. row
length

Max. column
length

2K (2048 bytes) 1964 1954

4K (4096 bytes) 4012 4002

8K (8192 bytes) 8108 7998

16K (16384 bytes) 16300 16290

New Features for Adaptive Server Version 12.5 2-25

Adaptive Server version 12.5 Beta Simplified units for disk init, disk reinit, create database, and alter database

However, the following table definition is not acceptable. The
potential start offset for column c2 is greater than the 8192-byte limit
because of the proceeding 9000 byte c4 column:

create table t2 (
c1 int not null,
c4 varchar(9000) null,
c3 varchar(4000) null,
c2 varchar(1000) null) lock datarows

The table is created, but Adaptive Server issues a warning message
indicating the column that is causing the problem.

Index size

Table 2-4 describes the limits for index size for APL and DOL tables:

Table 2-4: Index row-size limits

You can create tables with columns wider than the limit for the index
key; however you cannot index these columns. For example, if you
perform the following on a 2K page server:

create table t1 (
c1 int
c2 int
c3 char(700))

and then try to create an index on c3, the command fails and
Adaptive Server issues an error message because column c3 is larger
than the index row-size limit (600 bytes).

Simplified units for disk init, disk reinit, create database, and alter database

disk init, disk reinit, create database, and alter database allow you to specify
unit sizes for space allocation in terms of the number of pages,

Page size
User-visible
Index row-
size limit

Internal
index row-
size limit

2K (2048 bytes) 600 650

4L (4096 bytes) 1250 1310

8K (8192 bytes) 2600 2670

16K (16384 bytes) 5300 5390

2-26 New limits for Adaptive Server version 12.5

Simplified units for disk init, disk reinit, create database, and alter database Adaptive Server version 12.5 Beta

kilobytes, megabytes, or gigabytes. For the following syntax, the size
parameter that supports unit specifiers is in bold face type.

This is the disk init syntax:

disk init
name = " device_name " ,
physname = " physicalname " ,
vdevno = virtual_device_number ,
size = size_of_device
[, vstart = virtual_address

, cntrltype = controller_number]
[, contiguous]
[, dsync = {true|false}]

This is the disk reinit syntax:

disk reinit
name = " device_name ",
physname = " physicalname " ,
vdevno = virtual_device_number ,
size = size_of_device
[, vstart = virtual_address

, cntrltype = controller_number]
[, dsync = {true|false}

This is the syntax for create database:

create database database_name
[on {default | database_device} [= size]
 [, database_device [= size]]...]
[log on database_device [= size]
 [, database_device [= siz e]]...]
[with {override | default_location = "pathname"}]
[for {load | proxy_update}]

This is the syntax for alter database:

alter database database_name
[on {default | database_device } [= size]
 [, database_device [= size]]...]
[log on { default | database_device } [= size]
 [, database_device [= size]]...]
[with override]
[for load]
[for proxy_update]

Where size is ‘k’ or ‘K’ (kilobytes), ‘m’ or ‘M’ (megabytes), and ‘g’ or ‘G’
(gigabytes).

The following apply to the syntax for these commands:

New Features for Adaptive Server Version 12.5 2-27

Adaptive Server version 12.5 Beta Simplified units for disk init, disk reinit, create database, and alter database

• If you do not include a unit specifier you do not have include
quotes around size. However, you must use quotes if you include
a unit specifier.

• Sybase recommends that you always include the unit specifier in
both the disk init and create database commands to avoid confusion
in the actual number of pages allocated.

• You can specify the size as a float integer, but the size is rounded
down to the nearest whole-number multiple of logical pages.

• If you do not specify a unit specifier:

- disk init and disk reinit use the virtual page size of 2K.

- The size argument for create database and alter database is in terms
of megabytes of disk space. This value is converted to the
number of logical pages the master device was built with.

- Because Adaptive Server allocates space for databases in
chunks of 256 logical pages, create database and alter database
round-down the size specified to the nearest multiple of
allocation units.

- The minimum size of a database depends on the logical page
size used by the server, described in Table 2-4

Table 2-5: Minimum database sizes:

Examples

The following creates a 20MB device with a page size in units of 2K
pages (note that the size parameter has no unit specifier):

disk init
name = “books_dev”,
physname = “/sybase/devices/books.dat”,
vdevno = 21,
size = 10240

The following specifies a 20MB device:

Logical page size Minimum database size

2K 2 megabytes

4K 4 megabytes

8K 8 megabytes

16K 16 megabytes

2-28 New limits for Adaptive Server version 12.5

Space allocation Adaptive Server version 12.5 Beta

disk init
name = “comp_books_dev”,
physname = “/sybase/devices/comp_books.dat”,
vdevno = 25,
size = "20M"

The following creates a 2MB database on the default device:

create database pubs3
on default = "2M"

The following creates a 20MB database on the pubs_data and places a
5MB log on a separate device (note that the size parameter has no unit
specifier):

create database pubs
on pubs_data = 20
log on pubs_log = "5M"

Space allocation

The size of Adaptive Server‘s logical pages (2K, 4K, 8K, or 16K)
determines the server’s space allocation. Each allocation page, OAM
page, data page, index page, text page, and so on are built on a logical
page. For example, if the logical page size of Adaptive Server is 8K,
each of these page types are 8K in size. All of these pages consume
the entire size specified by the size of the logical page.

OAM pages have a greater number of OAM entries for larger logical
pages (for example, 8K) than for smaller pages (2K).

Table 2-6 describes the space allocation per different logical pages:

Table 2-6: Space allocation for different logical page sizes

Item 2K 4K 8K 16K
Comment
(see key
below)

Size of APL page header (bytes) 32 32 32 32 1

Size of DOL page header (bytes) 44 44 44 44 1

Row-offset specifier per row (APL
and DOL) at the end of the page

2 bytes 2 bytes 2 bytes 2 bytes 1

Number of logical pages in an extent 8 8 8 8 1

Size of one extent 16K 32K 64k 128K 2

New Features for Adaptive Server Version 12.5 2-29

Adaptive Server version 12.5 Beta Space allocation

Comments

• 1 – unchanged from previous versions of Adaptive Server.

Size of one in-memory buffer for a
logical page

2K 4K 8K 16K 2

Size of one large mass (1 extent worth
of buffers)

16K 32K 64K 128K 2

Number of extents in an allocation
unit (AU)

32 32 32 32 1

Number of logical pages in an
allocation unit

256 256 256 256 1

Size of an AU 0.5MB 1MB 2MB 4MB 2

Minimum size of a usable disk that
can be created by disk init is either 1M
or the size of 1 AU, whichever is
larger

1MB 1MB 2MB 4MB 2

Minimum size of a single disk piece
that can be allocated to a database
using create database or alter database
commands

Larger of 1M or 1 AU 2

Minimum size of a single disk piece
that can be allocated for the log

Larger of 1M or 1 AU 2

Default size of database if the size is
not specified by the user (and if not
configured via default database size);
the same size as the model database

4 AUs
(2M)

4 AUs
(4M)

4 AUs
(8M)

4 AUs
(16M)

2

Default size of a single disk piece that
you can allocate to a database with
create database or alter database

2M 4M 8M 16M 2

Number of OAM entries in one OAM
page

250 506 1018 2042 2varies
with page
size

Space tracked by one OAM page if
only one extent on an AU is allocated
to a given object

3.9M 15.8M 63.62M 255.2M 2

Useful space for data in one text page
(bytes)

1800 3600 7500 16200 2

Item 2K 4K 8K 16K
Comment
(see key
below)

2-30 New limits for Adaptive Server version 12.5

Space allocation Adaptive Server version 12.5 Beta

• 2 – Varies according to logical page size

Space overhead requirements

Regardless of the logical page size it is configured for, Adaptive
Server allocates space for objects (tables, indexes, text page chains) in
extents, each of which is eight logical pages. That is, if a server is
configured for 2K logical pages, it allocates one extent, 16K, for each
of these objects; if a server is configured for 16K logical pages, it
allocates one extent, 128K, for each of these objects.

This is also true for system tables. For small tables, space usage is
higher using larger logical pages than for smaller logical pages. For
example, for a server configured for 2K logical pages, systypes, which
has about 31 short rows, and both a clustered and a non-clustered
index, uses about 3 extents, or 48K of space. If you migrate the server
to use 8K pages, the space required for systypes is still 3 extents, about
192K of space. For a server configured for 16K, systypes requires
about 384K.

Databases, also, are affected by larger page sizes. Each database
includes the system catalogs and their indexes. If you migrate from a
smaller to larger logical page size, you must account for the amount
of disk space each database requires. Table 2-4 on page 25 lists the
minimum size for a database on each of the logical page sizes.

Number of rows per data page

The number of rows allowed for a DOL data page is determined by:

• The page size

• A 10-byte overhead for the row ID – this overhead specifies a
row-forwarding address

Table 2-7 shows the maximum number of data rows that can fit on a
DOL data page:

Table 2-7: Maximum number of data rows for a DOL data page

Page size Max. # of
rows

2K 166

4K 337

New Features for Adaptive Server Version 12.5 2-31

Adaptive Server version 12.5 Beta Maximum number of arguments for stored procedures

APL data pages can have a maximum of 256 rows. Because each page
requires a 1-byte row number specifier, large pages with short rows
incur some unused space. For example, if Adaptive Server is
configured with 8K logical pages and rows that are 25 bytes long, the
page will have 1275 bytes of unused space, after accounting for the
row-offset table, and the page header.

Maximum number of arguments for stored procedures

The maximum number of arguments for stored procedures is 2048.

Maximum length of expressions, variables, and arguments in stored procedures

The maximum size for expressions, variables, and arguments passed
to stored procedures is 16384 (16K) bytes, for any page size. This can
be either character or binary data. You can insert variables and
literals up to this maximum size without using the writetext command.

If your upgraded Adaptive Server used a lower maximum length

Earlier versions of Adaptive Server had a maximum size of 255 bytes
for expressions, variables, and arguments for stored procedures. Any
scripts or stored procedures that you wrote for previous versions of
Adaptive Server that used this old maximum may now return larger
string values because of the larger maximum page sizes.

Because of the larger value, Adaptive Server may truncate the string,
or the string may cause overflow if it was stored in another variable
or inserted into a column or string. If columns of existing tables are
modified to increase the length of character columns, you must
change any stored procedures that operate data on these columns to
reflect this new length.

Clients retrieving data with enhanced limits

Adaptive Server version 12.5 can store data that has different limits
than data stored in previous versions. Clients also must be able to

8K 678

16K 1361

Page size Max. # of
rows

2-32 New limits for Adaptive Server version 12.5

Maximum number of expressions in a select statement Adaptive Server version 12.5 Beta

handle the new limits the data can use. If you are using older
versions of Open Client and Open Server, they cannot process the
data if you perform the following:

1. Upgrade to Adaptive Server version 12.5.

2. Drop and recreate the tables with wide columns

3. Insert wide data.

Maximum number of expressions in a select statement

Adaptive Server version 12.5 has no explicit limit on the number of
expressions in a select statement. The number is only limited by the
available system memory.

Number of logins

Table 2-8 lists the limits for the number of logins, users, and groups
for Adaptive Server:

Table 2-8: Limits for logins, users, and groups

Item Version 12.0 Version 12.5 limit New range

Number of
logins per
server
(SUID)

64K 2 billion plus 32K -32768 to 2 billion

Number of
users per
database

48K 2 billion less
1048576

-32768 to 16383;
1048576 to 2 billion

Number of
groups per
database

16K 1048576 16392 to 1048576

New Features for Adaptive Server Version 12.5 2-33

Adaptive Server version 12.5 Beta Number of logins

Figure 2-1 describes this range of values:

Figure 2-1: Range for logins, users, and groups

Although Adaptive Server can handle over 2 billion users connecting
at one time, the actual number of users that can connect to Adaptive
Server is limited by:

• The number of user connections configuration parameter.

• The number of file descriptors available from the operating
system. Each user login uses one file descriptor per connection.

➤ Note
Before Adaptive Server can have more than 64K logins and simultaneous

connections, the operating system must be configured for more than 64K

file descriptors. See your operating system documentation for information

about increasing the number of file descriptors.

Table 2-9 lists the global variables for the server limits of logins,
users, and groups:

Table 2-9: Global variables for logins, users, and groups

Name of variable What it displays Value

@@invaliduserid Invalid user ID -1

@@minuserid Lowest user ID -32768

@@guestuserid Guest user ID 2

@@mingroupid Lowest group user ID 16384

@@maxgroupid Highest group user ID 1048576

@@maxuserid Highest user ID 2147483647

0 16384 1048576 2147483647

User IDs

Group IDs

SUIDs

2-34 New limits for Adaptive Server version 12.5

Summary of new limits for version Adaptive Server 12.5 Adaptive Server version 12.5 Beta

To issue a global variable, enter:

select variable_name

For example:

select @@minuserid

Summary of new limits for version Adaptive Server 12.5

Adaptive Server version 12.5 includes the following limits:

Table 2-10: New limits for Adaptive Server version 12.5

@@minsuid Lowest server user ID -32768

@@probesuid Probe server user ID 2

@@maxsuid Highest server user ID 2147483647

Item

Allpages locked (APL) tables Data-only locked (DOL) tables

----------------------------------Page Sizes -------------------------------------

2048 4096 8192 16384 2048 4096 8192 16384

User-visible
maximum row
lengths

1960 4008 8104 16296 1958 4006 8102 16294

Maximum row
lengths,
including
overheads

1962 4010 8106 16298 1964 4012 8108 16300

Fixed-length
column size

1960 4008 8104 16296 1958 4006 8102 16294

Variable-length
column size

1948 3988 8158 16228 1954 4002 7998 16290

User-visible size
of index key

600 1250 2600 5300 600 1250 2600 5300

Internal size of
index key

650 1310 2670 5390 650 1310 2670 5390

Table 2-9: Global variables for logins, users, and groups

Name of variable What it displays Value

New Features for Adaptive Server Version 12.5 2-35

Adaptive Server version 12.5 Beta Summary of new limits for version Adaptive Server 12.5

Table 2-11 describes the new limits for version 12.5 that do not
depend on the server’s page logical page size.

Table 2-11: New limits for version 12.5 independent of page size

Unchanged limits in version 12.5

Table 2-12 describes some limits that have not changed for version
12.5.

Item Adaptive Server
12.0 limits New limit

Number of logins per server 65536 2147516415

Number of users per database 49152 2146484222

Number of groups per database 16384 1032193

Number of columns per table 250 1024

Number of fixed length columns per table (for both APL
and DOL tables)

250 1024

Number of variable-length columns per APL table 250 254

Number of variable-length columns per DOL table 250 1024

Number of arguments to stored procedures 255 2048

Number of expressions (columns) in a select statement (undefined) Depends on
available
system memory

Length of variables for char/binary datatypes 255 16384

Length of concatenated strings 255 16384

Table 2-12: Limits that have not changed for Adaptive Server version 12.5

Item Adaptive Server
version 12.0 limit

Number of key columns in an index key 31

Number of arguments for stored
procedures

255

Maximum length of a database object 30

Number of items in an order by clause 31

Number of terms in a group by clause 31

2-36 New limits for Adaptive Server version 12.5

Changes to the create table command Adaptive Server version 12.5 Beta

Changes to the create table command

create table for Adaptive Server version 12.5 includes the same
functionality as previous versions of Adaptive Server, but is
restricted to creating tables with the limits described in earlier
sections (column and row length, number of columns per table,
number of rows per table, and so on). The following comments apply
to the 12.5 version of create table:

• Adaptive Server reports an error if the total size of all fixed length
columns, plus the row overhead, is greater than table’s locking
scheme and page size allow. These limits are described in Table 2-
2 and Table 2-3.

• If you create a DOL table with a variable-length column that
exceeds a 8191 byte offset, you cannot add any rows to the
column.

• In the following circumstances will create tables; however, you
will receive errors about size limitations when you perform DML
operations:

- If the total row size for rows with variable-length columns
exceeds the maximum column size.

- If the length of a single variable-length column exceeds the
maximum column size.

- For DOL tables, if the offset of any variable-length column
other than the initial column exceeds the limit of 8191 bytes.

Changes to the alter table command

The following are changes to alter table:

• alter table raises an error if the number of variable-length columns
in an APL table exceeds 254.

Number of devices per server 256

Number of segments per database 31

Maximum engines per server 128

Table 2-12: Limits that have not changed for Adaptive Server version 12.5

Item Adaptive Server
version 12.0 limit

New Features for Adaptive Server Version 12.5 2-37

Adaptive Server version 12.5 Beta Changes to create index

• The maximum value for the max_rows_per_page is 256 bytes for APL
tables. max_rows_per_page parameter is not used for DOL tables.

• When converting a table to a different locking scheme, the data of
the target table cannot violate the limits the source table requires.
For example, if you attempt to convert a DOL with more than 254
variable length columns to an APL table, alter table fails because an
APL table is restricted to having no more than 254 columns.

Changes to create index

If you create columns with lengths greater than the index row-size
limit, those columns cannot be indexed.

Transact-SQL command updates

set

You can update as many as 1024 columns in the set clause using
literals, variables, or expressions returned from a subquery.

select...for browse

• You cannot use the select...for browse option on tables containing
more than 255 columns.

compute

• If a compute clause includes a group by clause:

- The compute clause cannot contain more than 255 aggregates

- The group by clause cannot contain more than 255 columns.

• Columns included in a compute clause cannot be longer than 255
bytes.

like

• The character string indicated by the like keyword cannot be
longer than 255 bytes.

declare cursor

• You can include as many as 1024 columns in an update clause of a
client’s declare cursor statement.

2-38 New limits for Adaptive Server version 12.5

Client and server compatibility for the new limits Adaptive Server version 12.5 Beta

The + operator

• Returns result strings up to a length of 16384 bytes.

Client and server compatibility for the new limits

This section describes issues for clients running against Adaptive
Server version 12.5.

print statements

If you substitute parameters in print statements, you can combine
variables that include print statements.

If you connect to Adaptive Server with earlier versions Sybase software

Earlier versions of Sybase software (Open Client, Open Server,
Adaptive Server) could only send or receive data in packets 255 bytes
long. However, Adaptive Server version 12.5 is able to send and
receive data 16K long. If you connect to Adaptive Server version 12.5
with an earlier version of Open Client, Open Server, Adaptive
Server, and so on, the data they receive will be truncated to 255 bytes.

New functions

This section describes the new functions for Adaptive Server version
12.5.

New Features for Adaptive Server Version 12.5 2-39

Adaptive Server version 12.5 Beta pagesize()

pagesize()

Function

Returns the page size in bytes for the specified object

Syntax

int=pagesize(object_name [, index_name])
int=pagesize(dbid, object_id [, index_id])

Arguments

object_name – The name of the object you are searching. If you do not
specify a fully qualified object name, the current database is
searched.

index_name – Indicates the name of the index used for the search.

dbid – The ID of the database specified by object_name.

object_id – The ID of the object indicated by object_name.

index_id – The ID of the index indicated by index_name.

Example

The following checks the page size of sysobjects:

select pagesize(‘sysobjects’, ‘sysobjects’)

8192

Comments

• If you do not indicate an index name of ID, the default is to use
the data level of the table.

• If the specified object is not a table (for example, if the name of a
view is provided), pagesize() returns zero.

• If the specified object does not exist, pagesize() returns NULL.

• Because the logical page size is a server-wide setting for Adaptive
Server, all the objects you check using pagesize() report the same
size.

Permissions

Any user can execute pagesize().

2-40 New limits for Adaptive Server version 12.5

lockscheme() Adaptive Server version 12.5 Beta

lockscheme()

Function

Returns the locking scheme of the specified object as a string.

Syntax

varchar(11) = lockscheme(object_name)
varchar(11) lockscheme(object_id, dbid)

Arguments

object_name – The name of the object you are searching. If you do not
specify a fully qualified object name, the current database is
searched.

dbid – The ID of the database specified by object_name.

object_id – The ID of the object indicated by object_name.

Example

The following displays the locking scheme for sysobjects:

select lockscheme(‘sysobjects’)

allpages

The following displays the locking scheme for the authors table
(object_id = 32000114) in the pubs2 database (dbid = 4):

select lockscheme(32000114, 4)

allpages

Comments

• lockscheme() returns varchar(11) and allows NULLs.

• If the specified object is not a table, then lockscheme() returns the
string “not a table .”

Permissions

Any user can execute lockscheme().

New global variables

Adaptive Server version 12.5 includes the following global variables:

New Features for Adaptive Server Version 12.5 2-41

Adaptive Server version 12.5 Beta New dbcc commands

@@maxpagesize – returns the logical page size the server uses.

New dbcc commands

The following section describes new dbcc commands.

syntax

dbcc serverlimits

Keywords and options

serverlimits – Displays the current limits for Adaptive Server about
page, index, buffer, SQL, column, cache and row limits.

Examples

dbcc serverlimits

Limits independent of page size:
================================

Server-wide, Database-specific limits

Max engines per server : 128
Max number of logins per server : 2147516416
Max number of users per database : 2146484223
Max number of groups per database : 1032193
Max number of user-defined roles per server : 1024
Min database page size : 2048
Max database page size : 16384
Max length of a database-object name : 30

Database page-specific limits

APL page header size : 32
DOL page header size : 44

Table, Index related limits

Max number of columns in a table/view : 1024
Max number of indexes on a table : 250
Max number of user-keys in a single index : 31

Cache manager related limits

Default number of buffers in a named cache : 256

General SQL related

2-42 New limits for Adaptive Server version 12.5

New dbcc commands Adaptive Server version 12.5 Beta

Max number of arguments to stored procedures : 2048
Max number of subqueries in a single statement : 16
Max number of referential constraints per table : 192

Limits as a function of the page size:
======================================

Item dependent on page size: 2048 4096 8192 16384
--
Table-specific row-size limits

Max possible size of a log-record row on APL log page:
2014 4062 8158 16350
Physical Max size of an APL data row, incl row-overheads:
1962 4010 8106 16298
Physical Max size of a DOL data row, incl row-overheads:
1964 4012 8108 16300
Max user-visible size of an APL data row:
1960 4008 8104 16296
Max user-visible size of a DOL data row:1958 4006 8102 16294
Max user-visible size of a fixed-length column in an APL table:
1960 4008 8104 16296
Max user-visible size of a fixed-length column in a DOL table:
1958 4006 8102 16294
Max user-visible size of a variable-length column in an APL table:
1948 3988 8068 16228
Max user-visible size of a variable-length column in a DOL table:
1954 4002 8098 16290
Max number of rows per APL data page:256 256 256 256
Max number of rows per DOL data page:166 337 678 1361

Index-specific row-size limits

Max index row-size, including row-overheads 650 1300 2700 5400
Max user-visible index row-size:600 1250 2600 5300

OAM-manager related limits

Max number of OAM entries per OAM page:250 506 1018 2042

Text-manager related limits

Max text size available for user data: 1800 3600 7650 16200

Cache manager related limits

Min size of named cache (KB):512 1024 2048 4096
Default size of named cache (KB): 1024 2048 4096 8192

DBCC execution completed. If DBCC printed error messages, contact a user
with System Administrator (SA) role.

New Features for Adaptive Server Version 12.5 2-43

Adaptive Server version 12.5 Beta New dbcc commands

Comments

dbcc serverlimits displays the information for all the logical page sizes
to which Adaptive Server can be set, not just the logical page size it is
currently set.

Permissions

Anybody can run dbcc serverlimits.

2-44 New limits for Adaptive Server version 12.5

New dbcc commands Adaptive Server version 12.5 Beta

New Features for Adaptive Server Version 12.5 3-45

3 Getting Started with Java 3.

This chapter describes the Java runtime environment, how to enable
Java on the server, and how to install Java classes in the database.
You should read this chapter if you are installing either or both of
these Adaptive Server version 12.5 beta features:

• SQLJ functions and stored procedures

• XML in the database

• Your installation must possess a valid Sybase Java site license to
install and use these features.

• For more information about using Java and SQL together, refer to
Java in Adaptive Server Enterprise.

• In this chapter, these topics are discussed:

The Java Runtime Environment

The Adaptive Server runtime environment for Java requires a Java
VM, which is available as part of the database server, and the Sybase
runtime Java classes, or Java API. If you are running Java
applications on the client, you may also require the Sybase JDBC
driver, jConnect, on the client.

Java Classes in the Database

You can use either of the following sources for Java classes:

• Sybase runtime Java classes

• User-defined classes

Name Page

The Java Runtime Environment page
3-45

Enabling the Server for Java page
3-47

Creating Java Classes and JARs page
3-47

Installing Java Classes in the Database page
3-48

3-46 Getting Started with Java

The Java Runtime Environment Adaptive Server version 12.5 Beta

Sybase Runtime Java Classes

To support Java in the database, Adaptive Server:

• Comes with its own Java VM, specifically developed for handling
Java processing in the server.

• Uses its own JDBC driver that runs in the server and accesses the
database.

The Sybase Java VM runs in the database environment. It interprets
compiled Java instructions and runs them in the database server. The
Sybase Java VM supports a subset of JDK version 1.1.8 (UNIX and
Windows NT) classes and packages.

The Sybase runtime Java classes are the low-level classes installed to
Java-enable a database. They are downloaded when Adaptive Server
is installed and are available thereafter from $SYBASE
/$SYBASE_ASE/lib/runtime.zip (UNIX) or
%SYBASE%\%SYBASE_ASE%\lib\runtime.zip (Windows NT). You
do not need to set the CLASSPATH environment variable specifically
for Java in Adaptive Server.

Sybase does not support runtime Java packages and classes that
assume a screen display, deal with networking and remote
communications, or handle security.

User-Defined Java Classes

You install user-defined classes into the database using the installjava

utility. Once installed, these classes are available from other classes in
the database and from SQL as user-defined datatypes.

JDBC Drivers

The Sybase internal JDBC driver that comes with Adaptive Server
conforms to JDBC version 2.0.

If your system requires a JDBC driver on the client, you can use:

• jConnect version 4.2, which supports JDK version 1.x

• jConnect version 5.2, which supports JDK version 2.x

.

New Features for Adaptive Server Version 12.5 3-47

Adaptive Server version 12.5 Beta Enabling the Server for Java

Enabling the Server for Java

To enable the server and its databases for Java, enter this command
from isql :

sp_configure “enable java”, 1

Then shutdown and reboot the server.

By default, Adaptive Server is not enabled for Java. You cannot
install Java classes or perform any Java operations until the server is
enabled for Java.

You can increase or decrease the amount of memory available for
Java features in Adaptive Server to optimize performance using the
sp_configure system procedure. Java configuration parameters are
described in the Adaptive Server System Administration Guide.

Disabling the Server for Java

To disable Java in the database, enter this command from isql :

sp_configure “enable java”, 0

Creating Java Classes and JARs

The Sybase-supported classes from the JDK are installed on your
system when you install Adaptive Server version 12.5 beta. This
section describes the steps for creating and installing your own Java
classes.

To make your Java classes (or classes from other sources) available
for use in the server, follow these steps:

1. Write and save the Java code that defines the classes.

2. Compile the Java code.

3. Create Java archive (JAR) files to organize and contain your
classes.

4. Install the JARs and classes in the database.

Writing the Java Code

Use the Sun Java SDK or a development tool such as Sybase PowerJ
to write the Java code for your class declarations. Save the Java code

3-48 Getting Started with Java

Installing Java Classes in the Database Adaptive Server version 12.5 Beta

in a file with an extension of .java. The name and case of the file must
be the same as that of the class.

➤ Note
Make certain that any Java API classes used by your classes are among

the supported API classes.

Compiling the Java Code

This step turns the class declaration containing Java code into a new,
separate file containing byte code. The name of the new file is the
same as the Java code file but has an extension of .class. You can run
a compiled Java class in a Java runtime environment regardless of the
platform on which it was compiled or the operating system on which
it runs.

Saving Classes in a JAR File

You can organize your Java classes by collecting related classes in
packages and storing them in JAR files.

To install Java classes in a database, the classes or packages must first
be saved in a JAR file, in uncompressed form. To create an
uncompressed JAR file that contains Java classes, use the Java jar cf0

command.

In this UNIX example, the jar command creates an uncompressed
JAR file that contains all .class files in the jcsPackage directory:

jar cf0 jcsPackage.jar jcsPackage/*.class

Note that the “0” in cf0 is “zero.”

JAR files allow you to install or remove related classes as a group.

Installing Java Classes in the Database

To install Java classes from a client operating system file, use the
installjava (UNIX) or instjava (Windows NT) utility from the command
line.

Refer to Adaptive Server Utilities Programs for your platform for
detailed information about these utilities. Both utilities perform the
same tasks; for simplicity, this document uses UNIX examples.

New Features for Adaptive Server Version 12.5 3-49

Adaptive Server version 12.5 Beta Installing Java Classes in the Database

Using installjava

installjava copies a JAR file into the Adaptive Server system and makes
the Java classes contained in the JAR available for use in the current
database. The syntax is:

installjava
 -f file_name
 [-new | -update]
 [-j jar_name]

For example, to install classes in the addr.jar file, enter:

installjava -f “/home/usera/jars/addr.jar”

The –f parameter specifies an operating system file that contains a
JAR. You must use the complete path name for the JAR.

This section describes retained JAR files (using -j) and updating
installed JARs and classes (using new and update). For more
information about these and the other options available with
installjava , see the Utility Programs manual for your platform.

Retaining the JAR File

When a JAR is installed in a database, the server disassembles the
JAR, extracts the classes, and stores them separately. The JAR is not
stored in the database unless you specify installjava with the -j

parameter.

Use of -j determines whether the Adaptive Server system retains the
JAR specified in installjava or uses the JAR only to extract the classes to
be installed.

• If you do not specify the -j parameter, the Adaptive Server system
does not retain any association of the classes with the JAR. This is
the default option.

• If you do specify the -j parameter, Adaptive Server installs the
classes contained in the JAR in the normal manner, and then
retains the JAR and its association with the installed classes.

If you retain the JAR file:

• You can remove the JAR and all classes associated with it, all at
once, with the remove java statement. Otherwise, you must remove
each class or package of classes one at a time.

• Other systems may request that the class associated with a given
Java column be downloaded with the column value. If a class

3-50 Getting Started with Java

Installing Java Classes in the Database Adaptive Server version 12.5 Beta

retains its association with the JAR, the Adaptive Server system
can download the JAR, rather than individual classes.

Referencing Other Java-SQL Classes

Installed classes can reference other classes in the same JAR file and
classes previously installed in the same database, but they cannot
references classes in other databases.

If the classes in a JAR file do reference undefined classes, an error
may result:

• If an undefined class is referenced directly in SQL, it causes a
syntax error for “undefined class.”

• If an undefined class is referenced within a Java method that has
been invoked, it throws a Java exception that may be caught in
the invoked Java method or cause a general SQL exception.

The definition of a class can contain references to unsupported
classes and methods as long as they are not actively referenced or
invoked. Similarly, an installed class can contain a reference to a user-
defined class that is not installed in the same database as long as the
class is not instantiated or referenced.

New Features for Adaptive Server Version 12.5 4-51

4 Using Java Methods as SQL
Functions and Stored Procedures 4.

➤ Note
To use Adaptive Server’s Java capabilities, you must have an Adaptive

Server Java site license

Adaptive Server 12.5.beta extends the Java capabilities provided
with Adaptive Server 12.0. With Adaptive Server version 12.0, you
can:

• Install and execute Java methods from both the client and the
data server.

• Execute Java methods as built-in functions in the data server.

• Use Java classes as abstract datatypes (ADTs), so that you can
store Java objects in the database and define columns as Java
datatypes.

Adaptive Server version 12.5.beta provides additional ways to
execute Java methods. With version 12.5.beta, you can enclose Java
static methods in SQL wrappers and use them exactly as you would
standard SQL stored procedures or user-defined functions. This new
functionality:

• Allows Java methods to return values, output parameters, and
result sets to the calling environment.

• Complies with Part 1 of the SQLJ standard specification.

• Allows you to use existing Java methods as SQLJ procedures and
functions on the server, on the client, and on any SQLJ-compliant,
third-party database.

By wrapping a Java method in a SQL name, you also take advantage
of traditional SQL syntax and SQL metadata and permission
capabilities.

➤ Note
SQLJ stored procedures and functions extend the Java-SQL features and

capabilities offered in Adaptive Server 12.0. They do not replace or change

those features.

4-52 Using Java Methods as SQL Functions and Stored Procedures

Adaptive Server version 12.5 Beta

Java methods that do not return result sets or output parameters can
be invoked either as Java-SQL methods (described in Java in Adaptive
Server Enterprise) or as SQLJ routines (described in this chapter).

To create a SQLJ stored procedure or function:

Before you can use Adaptive Server SQLJ capabilities, you must
make sure that Java has been enabled on your server. Refer to
“Getting Started in Java” for instructions for enabling Java on
Adaptive Server.

You perform these steps to create and execute a SQLJ stored
procedure or function.

1. Create and compile the Java method. Install the method class in
the database using installjava.

Refer to “Getting Started in Java” for information on creating,
compiling, and installing Java methods in Adaptive Server.

2. Using create procedure or create function, define a SQL name for the
method.

3. Execute the procedure or function. The examples in this chapter
use JDBC method calls. You can also call the method using
Embedded SQL or ODBC.

When executing a SQLJ procedure or function call, an uncaught Java
exception raises a SQL exception and displays the error message:

Java method terminated with exception

Compliance with SQLJ specifications

Compliance with SQLJ standards ensures that Sybase SQLJ
functionality ports to all third-party, standards-compliant relational
databases.

Adaptive Server SQLJ stored procedures and functions comply with
SQLJ Part 1 of the standard specifications for using Java with SQL.
These specifications were developed by a consortium of SQL
vendors and have been accepted as an official ANSI standard. They
can be found on the Web at http://www.ansi.org. In this document,
SQLJ refers to capabilities compliant with SQLJ Part 1 of the standard
specifications.

• SQLJ Part 0: “Database Language SQL - Part 10: Object Language
Bindings (SQL/OLB),” ANSI X3.135.10-1998.

New Features for Adaptive Server Version 12.5 4-53

Adaptive Server version 12.5 Beta

➤ Note
SQLJ Part 0 is Part 10 of the SQL Standard.

Specifications for embedding SQL statements in Java methods.

• SQLJ Part 1: “SQLJ—Part 1: SQL Routines using the Java
Programming Language,” ANSI NCITS N331.1.

Specifications for calling Java static methods as SQL stored
procedures and user-defined functions.

• SQLJ Part 2: “SQLJ—Part 2: SQL Types using the Java
Programming Language,” ANSI NCITS N331.2.

Specifications for using Java classes as SQL datatypes.

Adaptive Server version 12.5.beta supports most features described
in the SQLJ Part 1 specification; however, there are some differences.
Unsupported features are listed in Table 4-3 on page 78 and partially
supported features are listed in Table 4-4 on page 79. Sybase-defined
features—those not defined by the standard but left to the
implementation—are listed in Table 4-5 on page 79.

In those instances where Sybase proprietary implementation differs
from the SQLJ specifications, Sybase supports the SQLJ standard. For
example, Sybase SQL stored procedures support two parameter
modes: in and inout. The SQLJ standard supports three parameter
modes: in, out, and inout. The Sybase syntax for creating SQLJ stored
procedures also supports all three parameter modes. See the syntax
description for “create function” on page 82 for more information
about parameter modes.

General issues

This section describes general issues and constraints that apply to
SQLJ functions and stored procedures

• Only static (class) methods can be referenced in a SQLJ function
or stored procedure.

• Sybase recommends that you do not use static variables in
methods referenced by SQLJ functions or stored procedures. The
values returned for these variables may be unreliable.

• During the execution of a SQLJ routine, data is passed from SQL
to Java and back to SQL. The data conversions must follow the
rules for datatype mapping outlined in the JDBC standard and in
Java in Adaptive Server Enterprise.

4-54 Using Java Methods as SQL Functions and Stored Procedures

Adaptive Server version 12.5 Beta

Refer to “Mapping Java and SQL datatypes” on page 73 for a
discussion of datatype mapping and conversions.

• If a method referenced by a SQLJ function or stored procedure
invokes SQL, returns parameters from the SQL system to the
calling environment, or returns result sets from SQL to the calling
environment, you must use a JDBC interface that enables object-
oriented access to the relational database.

Examples

The examples used in this chapter assume a SQL table called
sales_emps with these columns:

• name – the employee’s name

• id – the employee’s identification number

• state – the state in which the employee is located

• sales – amount of employee’s sales

• jobcode – the employee’s job code

The table definition is:

create table sales_emps
(name varchar(50), id char(5),
state char(20), sales decimal (6,2),
jobcode integer null)

The example Java classes and methods are:

• Routines1.region() – maps a U.S. state code to a region number. The
method does not use SQL.

• Routines1.correctStates() – performs a SQL update command to correct
the spelling of state codes. Old and new spellings are specified by
input parameters.

• Routines2.bestTwoEmps() – determines the top two employees by their
sales records and returns those values as output parameters.

• Routines3.orderedEmps() – creates a SQL result set consisting of
selected employee rows ordered by values in the sales column,
and returns the result set to the client.

• Routines5.job2() – Returns a string value corresponding to an integer
job code value.

New Features for Adaptive Server Version 12.5 4-55

Adaptive Server version 12.5 Beta SQLJ user-defined functions

SQLJ user-defined functions

The create function command specifies a SQLJ function name and
signature for a Java method. You can use SQLJ functions to read and
modify SQL and to return a value described by the referenced
method.

The SQLJ syntax for create function is:

create function [owner]. sql_function_name
([sql_parameter_name sql_datatype

[(length)| (precision [, scale])]
[, sql_parameter_name sql_datatype

[(length) |
(precision [, scale]) ...]])

returns sql_datatype
[(length)| (precision [, scale])]

[modifies sql data]
[returns null on null input |

called on null input]
[deterministic | not deterministic]
[exportable]
language java
parameter style java
external name ' java_method_name

[([java_datatype [, java_datatype ...]])]'

When creating a SQLJ function:

• The SQL function signature is the name (sql_parameter_name) and
SQL datatype (sql_datatype) of each function parameter.

• When creating a SQLJ function, you must include the parentheses
that surround function parameter information—even if you do
not include that information.

For example:

create function blue ()
language java
parameter style java

external name ‘javamethod’

• You can include the deterministic or not deterministic keywords, but
Adaptive Server 12.5.beta does not use them. They are included
for syntactic compatibility with the SQLJ Part 1 standard.

• The clauses returns null on null input and called on null input specify how
Adaptive Server handles null arguments of a function call. returns

null on null input specifies that if the value of any argument is null at
runtime, the return value of the function is set to null and the

4-56 Using Java Methods as SQL Functions and Stored Procedures

SQLJ user-defined functions Adaptive Server version 12.5 Beta

function body is not invoked. called on null input, the default, specifies
that the function is invoked regardless of null argument values.

Function calls and null argument values are described in detail
in “Handling nulls in the function call” on page 60.

• The modifies sql data clause specifies that the method invokes SQL
operations and reads and modifies SQL data. This is the default
value. You do not need to include it except for syntactic
compatibility with the SQLJ Part 1 standard.

• The exportable keyword specifies that the function is to run on a
remote server using Omni capabilities. Both the function and the
method on which it is based must be installed on the remote
server.

• The clauses language java and parameter style java specify that the
referenced method is written in Java and that the parameters are
Java parameters. You must include these phrases when creating a
SQLJ function.

• The external name clause specifies that the routine is not written in
SQL and identifies the Java method, class and, package name (if
any).

• The Java method signature specifies the Java datatype
(java_datatype) of each method parameter (java_parameter_name).
The Java method signature is optional, but if one is not specified,
Adaptive Server infers one from the SQL function signature.

See “Mapping Java and SQL datatypes” on page 73 for more
information.

Writing the Java method

Before you can create a SQLJ function, you must write the Java
method that references it, compile the method class, and install it in
the database.

In this example, the Routines1.region maps a state code to a region
number and returns that number to the user. The entire Routines1 class
is shown below; the Routines1.correctStates() method is referenced in the
SQLJ procedure in “Modifying SQL data” on page 63.

import java.lang.*;
import java.sql.*;

static String _url = “jdbc:default:connection”;

New Features for Adaptive Server Version 12.5 4-57

Adaptive Server version 12.5 Beta SQLJ user-defined functions

public class Routines1 {

public static int region(String s)
throws SQLException {

s = s.trim();
if (s.equals(“MN”) || s.equals(“VT”) ||

s.equals(“NH”)) return 1;
if (s.equals(“FL”) || s.equals(“GA”) ||

s.equals(“AL”)) return 2;
if (s.equals(“CA”) || s.equals(“AZ”) ||

s.equals(“NV”)) return 3;
else throw new SQLException

(“Invalid state code”, “X2001”);

}

public static void correctStates
(String oldSpelling, String newSpelling)
throws SQLException {

Connection conn = null;
PreparedStatement pstmt = null;
try {

Class.forName
(”sybase.asejdbc.ASEDriver”);

conn = DriverManager.getConnection(_url);
}
catch (Exception e) {

System.err.println(e.getMessage() +
“:error in connection”);

}
try {

pstmt = conn.prepareStatement
(“UPDATE sales_emps SET state = ?
WHERE state = ?”);

pstmt.set.String(1, newSpelling);
pstmt.set.String(2, oldSpelling);
pstmt.executeUpdate();

}
catch (SQLException e) {

System.err.println(“SQLException: “ +
e.getErrorCode() + e.getMessage());

}
return;
}

}

4-58 Using Java Methods as SQL Functions and Stored Procedures

SQLJ user-defined functions Adaptive Server version 12.5 Beta

Creating the SQLJ function

After writing and installing the method, you can create the SQLJ
function. For example:

create function region_of(state char(20))
returns integer

language java parameter style java
external name 'Routines1.region'

The SQLJ create function statement specifies an input parameter (state

char(20)) and an integer return value. The SQL function signature is
“state char(20).” Because there is no explicit Java method signature,
the system infers a Java method signature for the method from the
SQL function signature.

SQLJ routines rely on datatype correspondance between the
parameters of the SQLJ routine and the referenced Java method.
When the Java method signature is not present, the system infers one
according to the correspondance rules in Table 4-1 on page 74. In this
example, Adaptive Server infers a Java method signature of
java.lang.String for the Routines1.region method.

Calling the function

You can call the SQLJ function as if it were a built-in function. For
example:

select name, dbo.region_of(state) as region
from sales_emps

where dbo.region_of(state)=3

➤ Note
When calling a SQLJ function, you must include the function owner as well

as the function name. Because only the Database Owner can create SQLJ

functions, each function invocation has the form “dbo.function_name.”

Handling null argument values

Java class datatypes and Java primitive datatypes handle null
argument values in different ways.

• Java datatypes that are classes—such as java.lang.Integer, java.lang.String,
java.lang.byte[], and java.sql.Timestamp—can hold both actual values and
null reference values.

New Features for Adaptive Server Version 12.5 4-59

Adaptive Server version 12.5 Beta SQLJ user-defined functions

• Java primitive datatypes—such as boolean, byte, short, and int—have
no representation for a null value. They can hold only non-null
values.

When a Java method is invoked that causes a SQL null value to be
passed as an argument to a Java parameter whose datatype is a Java
class, it is passed as a Java null reference value.When a SQL null
value is passed as an argument to a Java parameter of a Java
primitive datatype, however, an exception is raised as the Java
primitive datatype has no representation for a null value.

Typically, you will write Java methods that specify Java parameter
datatypes that are classes and nulls are handled without raising an
exception. If you choose to write Java functions that use Java
parameters that cannot handle null values, you can either:

• Include the returns null on null input clause when you create the SQLJ
function, or

• Invoke the SQLJ function using a case or other conditional
expression to test for null values and call the SQLJ function only
for the non-null values.

You can handle expected nulls when you create the SQLJ function or
when you call it. The following sections describe both scenarios, and
reference this method:

import java.lang.*;
import java.sql.*;

public class Routines5 {
public static String job2(int jc)

throws SQLException {
if (jc==1) return “Admin”;

else if (jc==2) return “Sales”;
else if (jc==3) return “Clerk”;
else return “unknown jobcode”;
}

}

Handling nulls when creating the function

If null values are expected, you can include the returns null on null input

clause when you create the function. For example:

4-60 Using Java Methods as SQL Functions and Stored Procedures

SQLJ user-defined functions Adaptive Server version 12.5 Beta

create function job_of22(jc integer)
returns varchar(20)

returns null on null input
language java parameter style java
external name 'Routines5.job2'

You can then call job_of22 in this way:

select name, dbo.job_of22(jobcode)
from sales_emps

where dbo.job_of22(jobcode) <> “Admin”

When the SQL system evaluates the call job_of22(jobcode) for a row of
sales_emps in which the jobcode column is null, the value of the call is set
to null without actually calling the Java method Routines5.job2. For rows
with non-null values of the jobcode column, the call is performed
normally.

Thus, when a SQLJ function created using the returns null on null input

clause encounters a null argument, the result of the function call is
set to null and the function is not invoked.

➤ Note
If you include the returns null on null input clause when creating a SQLJ function,

the returns null on null input clause applies to all function parameters, including

nullable parameters.

If you include the called on null input clause (the default), null arguments
for non-nullable parameters will generate an exception.

Handling nulls in the function call

You can use a conditional function call to handle null values for non-
nullable parameters. The following example uses a case expression:

select name,
case when jobcode is not null

then dbo.job_of2(jobcode)
else null end

from sales_emps where
case when jobcode is not null

then dbo.job_of2(jobcode)
else null end <> “Admin”

In this example, we assume that the function job_of2 was created using
the default clause called on null input.

New Features for Adaptive Server Version 12.5 4-61

Adaptive Server version 12.5 Beta SQLJ stored procedures

Deleting a SQLJ function name

You can delete the SQLJ function name for a Java method using the
drop function command. For example, enter:

drop function region_of

which deletes the region_of function name and its reference to the
Routines1.region method. drop function does not affect the referenced Java
method or class.

See “drop function” on page 84 for syntax and usage information.

SQLJ stored procedures

Using Java-SQL capabilities, you can install Java classes in the
database and then invoke those methods from a client or from within
the SQL system. Adaptive Server version 12.5.beta lets you invoke
Java static (class) methods in another way—as SQLJ stored
procedures.

SQLJ stored procedures:

• Can return result sets and/or output parameters to the client

• Behave exactly as standard SQL stored procedures when
executed

• Can be called from the client using ODBC, isql, or JDBC

• Can be called within the server from other stored procedures or
native Adaptive Server JDBC

The end-user need not know whether the procedure being called is a
SQLJ stored procedure or a Sybase Transact-SQL stored procedure.
They are invoked in the same way.

The SQLJ syntax for create procedure is:

4-62 Using Java Methods as SQL Functions and Stored Procedures

SQLJ stored procedures Adaptive Server version 12.5 Beta

create procedure [owner .] sql_procedure_name
([[in | out | inout] sql_parameter_name

sql_datatype [(length) |
(precision [, scale])]

[, in | out | inout] sql_parameter_name
sql_datatype [(length) |
(precision [, scale]) ...])

[modifies sql data]
[dynamic result sets integer]
[deterministic | not deterministic]
language java
parameter style java
external name ' java_method_name

[([java_datatype [, java_datatype ...]])]'

➤ Note
To comply with the SQLJ Part 1 standard, the SQLJ create procedure

command syntax is different from syntax used to create Sybase Transact-

SQL stored procedures.

Refer to “create procedure” on page 85 for a detailed description of
each keyword and option in this command.

When creating SQLJ stored procedures:

• The SQL procedure signature is the name (sql_parameter_name)
and SQL datatype (sql_datatype) of each procedure parameter.

• When creating a SQLJ stored procedure, you must include the
parentheses that surround the SQL procedure signature—even if
you do not include that information.

For example:

create procedure red ()
language java
parameter style java

external name ‘javamethod1’

• You must include the dynamic result sets integer option when result
sets are to be returned to the calling environment. Use the integer
variable to specify the maximum number of result sets expected.

• You can include the keywords deterministic or not deterministic for
compatibility with the SQLJ standard. However, Adaptive Server
12.5.beta does not make use of this option.

• You must include the language java parameter style java keywords, which
tell Adaptive Server that the external routine is written in Java

New Features for Adaptive Server Version 12.5 4-63

Adaptive Server version 12.5 Beta SQLJ stored procedures

and the runtime conventions for arguments passed to the
external routine are Java conventions.

• You can include the keywords modifies sql data to indicate that the
method invokes SQL operations and reads and modifies SQL
data. In Adaptive Server 12.5.beta, this is the default value.

• You can define different SQL names for the same Java method
using create procedure and then use them in the same way.

• The external name clause indicates that the external routine is written
in Java and identifies the Java method, class, and package name
(if any).

• The Java method signature specifies the Java datatype
(java_datatype) of each method parameter (java_parameter_name).
The Java method signature is optional, but if one is not specified,
Adaptive Server infers one from the SQL procedure signature.

See “Mapping Java and SQL datatypes” on page 73 for detailed
information.

Modifying SQL data

You can use a SQLJ stored procedure to modify information in the
database. The method referenced by the SQLJ procedure must be
either:

• A method of type void, or

• A method with an int return type (the int return type is a Sybase
extension of the SQLJ standard)

By enclosing the method in a SQL wrapper, you can then call the
method as if it were a SQL stored procedure.

Writing the Java method

The method Routines1.correctStates performs a SQL update statement to
correct the spelling of state codes. Input parameters specify the old
and new spellings. correctStates is a void method; no value is returned
to the caller.

➤ Note
Only the correctStates method is shown below. See “SQLJ user-defined

functions” on page 55 for the complete text of the Routines1 class.

4-64 Using Java Methods as SQL Functions and Stored Procedures

SQLJ stored procedures Adaptive Server version 12.5 Beta

public static void correctStates(String oldSpelling, String
newSpelling) throws SQLException {

Connection conn = null;
PreparedStatement pstmt = null;
try {

Class.forName(”sybase.asejdbc.ASEDriver”);
conn = DriverManager.getConnection(_url);

}
catch (Exception e) {

System.err.println(e.getMessage() +
“:error in connection”);

}
try {

pstmt = conn.prepareStatement
(“UPDATE sales_emps SET state = ?
WHERE state = ?”);

pstmt.set.String(1, newSpelling);
pstmt.set.String(2, oldSpelling);
pstmt.executeUpdate();

}
catch (SQLException e) {

System.err.println(“SQLException: “ +
e.getErrorCode() + e.getMessage());

}
return;

}

Creating the stored procedure

Before you can call a Java method with a SQL name, you must create
the SQL name for it using the SQLJ create procedure command. The
modifies sql data clause is optional.

create procedure correct_states(old char(20),
not_old char(20))

modifies sql data
language java parameter style java
external name 'Routines1.correctStates'

The correct states procedure has a SQL procedure signature of “old
char(20), not_old char(20).” Because there is no Java method
signature specified, the system infers a method signature of String and
String from the SQL procedure signature. Note that the datatypes of
the input parameters in the correctStates method are indeed String.

New Features for Adaptive Server Version 12.5 4-65

Adaptive Server version 12.5 Beta SQLJ stored procedures

Calling the stored procedure

You can execute the SQLJ procedure exactly as you would a Transact-
SQL procedure. In this example, the procedure executes from isql:

execute correct_states 'GEO', 'GA'

Using input and output parameters

Java methods do not support output parameters. When you wrap a
Java method in SQL, however, you can take advantage of Sybase
SQLJ capabilities that allow input, output, and input/output
parameters.

When you create a SQLJ procedure, you identify the mode for each
parameter as in, out, or inout.

• For input parameters, use the in keyword to qualify the
parameter. in is the default; Adaptive Server assumes an input
parameter if you do not enter a parameter mode name.

• For output parameters, use the out keyword.

• For parameters that can pass values both to and from the
referenced Java method, use the inout keyword.

➤ Note
You create Sybase Transact-SQL stored procedures using only the in and

out keywords. The out keyword corresponds to the SQLJ inout keyword. See

the create procedure reference pages in the Adaptive Server Reference
Manual for more information.

• To create a SQLJ stored procedure that defines output
parameters, you must:

• Define the output parameter(s) using either the out or inout option
when you create the SQLJ stored procedure.

• Declare those parameters as Java arrays in the Java method. SQLJ
uses arrays as containers for the method’s output parameter
values.

For example, if you want an Integer parameter to return a value to
the caller, you must specify the parameter type as Integer[] (an
array of Integer) in the method.

The array for an out or inout parameter is created implicitly by the
system. It has a single element. The input value (if any) is placed

4-66 Using Java Methods as SQL Functions and Stored Procedures

SQLJ stored procedures Adaptive Server version 12.5 Beta

in the first (and only) element of the array before the Java
method is called. When the Java method returns, the first
element is removed and assigned to the output variable.
Typically, this element will be assigned a new value by the called
method.

The following examples illustrate the use of output parameters using
a Java method bestTwoEmps() and a stored procedure best2 that
references that method.

Writing the Java method

The Routines2.bestTwoEmps() method returns the name, ID, region, and
sales of the two employees with the highest sales performance
records. The first eight parameters are output parameters requiring a
containing array. The ninth parameter is an input parameter and
does not require an array.

◆ WARNING!
This method is in development; it may not run on your computer.

import java.lang.*;
import java.math.*;
import java.sql.*;

public class Routines2 {
public static void bestTwoEmps(String[] n1,

String[] id1, int[] r1,
BigDecimal[] s1, String[] n2,
Sting[] id2, int[] r2, BigDecimal[] s2,
int regionParm) throws SQLException {

n1[0] = “****”; n2[0] = “****”;
id1[0] = ““; id2[0] = ““:
r1[0] = 0; r2[0] = 0;
s1[0] = new BigDecimal(0);
s1[0] = new BigDecimal(0);

New Features for Adaptive Server Version 12.5 4-67

Adaptive Server version 12.5 Beta SQLJ stored procedures

try {
Connection conn = DriverManager.getConnection

(“jdbc:default:connection”);
java.sql.PreparedStatement stmt =

conn.prepareStatement(SELECT name, id,
region_of(state) as region, sales FROM
sales_emps WHERE region_of(state)>? AND
sales IS NOT NULL ORDER BY sales DESC”);

stmt.setIngeger(1, regionParm)
ResultSet r = stmt.executeQuery();

if(r.next()) {
n1[0] = r.getString(“name”);
id1[0] = r.getString(“id”);
r1[0] = r.getInt(“region”);

s1[0] = R.getBigDecimal(“sales”, 2);
}
else return;

if(r.next()) {
n2[0] = r.getString(“name”);
id2[0] = r.getString(“id”);
r2[0] = r.getInt(“region”);
s2[0] = r.getBigDecimal(“sales”, 2);

}
else return;

}
catch (SQLException e) {

System.err.println(“SQLException: “ +
e.getErrorCode() + e.getMessage());

}
}

Creating the SQLJ procedure

Create a SQL name for the bestTwoEmps method. The first eight
parameters are output parameters; the ninth is an input parameter.

4-68 Using Java Methods as SQL Functions and Stored Procedures

SQLJ stored procedures Adaptive Server version 12.5 Beta

create procedure best2
(out n1 varchar(50), out id1 varchar(5),
out s1 decimal(6,2), out n2 varchar(50),
out id2 varchar(50), out r2 integer,
out s2 decimal(6,2), in region integer)
language java parameter style java
external name 'Routines2.bestTwoEmps'

The SQL procedure signature for best2 is: varchar(20), varchar(5), decimal (6,2)

and so on. No Java method signature is specified. Thus, the system
infers a Java method signature of java.lang.String, java.lang.String,
java.math.BigDecimal and so on in accordance with the JDBC standard
datatype mapping shown in Table 4-1 on page 74. However, because
best2 specifies output parameters, the equivalent Java method
parameter must specify an array of type java.lang.String[], java.lang.String[],
java.math.BigDecimal[] and so on. Otherwise, the method will fail.

The SQL system:

1. Creates the needed arrays for the out and inout parameters when
the SQLJ procedure is called.

2. Copies the contents of the parameter arrays into the out and inout

target variables when returning from the SQLJ procedure.

Calling the procedure

After the method is installed in the database and the SQLJ procedure
referencing the method has been created, you can call the SQLJ
procedure.

The following example uses JDBC calls. You can also use Embedded
SQL, isql, or ODBC.

◆ WARNING!
This JDBC procedure call example is in development; it may not run
on your computer.

New Features for Adaptive Server Version 12.5 4-69

Adaptive Server version 12.5 Beta SQLJ stored procedures

java.sql.CallableStatement stmt =
conn.prepareCall(“{call
best2(?,?,?,?,?,?,?,?,?)}”);

stmt.registerOutParameter(1,java.sql.Types.STRING);
stmt.registerOutParameter(1,java.sql.Types.STRING);
stmt.registerOutParameter(1,java.sql.Types.

INTEGER);
stmt.registerOutParameter(1,java.sql.Types.

DECIMAL);
stmt.registerOutParameter(1,java.sql.Types.STRING);
stmt.registerOutParameter(1,java.sql.Types.STRING);
stmt.registerOutParameter(1,java.sql.Types.

INTEGER);
stmt.registerOutParameter(1,java.sql.Types.

DECIMAL);
stmt.setInt(9,3);
stmt.executeUpdate();
String n1 = stmt.getString(1);
String n2 = stmt.getString(2);
int r1 = stmt.getInt(3);
BigDecimal s1 = stmt.getBigDecimal(4);
String n2 = stmt.getString(5);
String id2 = stmt.getString(6);
int r2 = stmt.getInt(7);
BigDecimal s2 = stmt.getBigDecimal(8);

Returning result sets

A SQL result set is a sequence of SQL rows that is delivered to the
calling environment.

When a Transact-SQL stored procedure returns one or more results
sets, those result sets are implicit output from the procedure call.
That is, they are not declared as explicit parameters or return values.

Java methods can return Java result set objects, but they do so as
explicitly declared method values.

To return a SQL-style result set from a Java method, you must first
wrap the Java method in a SQLJ stored procedure. When you call the
method as a SQLJ stored procedure, the result sets, which are
returned by the Java method as Java result set objects, can then be
processed by the SQL caller as if they were normal SQL-style result
sets.

When writing the Java method to be invoked as a SQLJ procedure
that returns a SQL-style result set, you must specify an additional
parameter to the method for each result set that the method can

4-70 Using Java Methods as SQL Functions and Stored Procedures

SQLJ stored procedures Adaptive Server version 12.5 Beta

return. Each such parameter is a single-element array of the Java
ResultSet class.

This section describes the basic process of writing a method, creating
the SQLJ stored procedure, and calling the method. See “Returning
result sets” on page 69 for detailed information about returning
result sets.

Writing the Java method

The following method, Routines3.orderedEmps, invokes SQL, includes a
ResultSet parameter, and uses JDBC calls for securing a connection and
opening a statement.

import java.lang.*;

import java.sql.*;

public class Routines3 {

public static void orderedEmps
(int regionParm, ResultSet[] rs) throws
SQLException {

Connection conn = null;
PreparedStatement pstmt = null;

try {
Class.forName

(”sybase.asejdbc.ASEDriver”);
conn =

DriverManager.getConnection(_url);
}
catch (Exception e) {

System.err.println(e.getMessage() +
“:error in connection”);

}

try {
java.sql.PreparedStatement

stmt = conn.prepareStatement
(“SELECT name, dbo.region_of(state) as
region, sales FROM sales_emps WHERE
dbo.region_of(state) > ? AND
sales IS NOT NULL
ORDER BY sales DESC”);

stmt.setInt(1, regionParm);

New Features for Adaptive Server Version 12.5 4-71

Adaptive Server version 12.5 Beta SQLJ stored procedures

rs[0] = stmt.executeQuery();
return;

}
catch (SQLException e) {

System.err.println(“SQLException:
“ + e.getErrorCode() + e.getMessage());

}
return;

}
}

orderedEmps returns a single result set. You can also write methods that
return multiple result sets. For each result set returned, you must:

• Include a separate ResultSet array parameter in the method
signature.

• Create a Statement object for each result set.

• Assign each result set to the first element of its ResultSet array.

Adaptive Server makes sure that only one ResultSet object is opened
for each Statement object. When creating Java methods that return
result sets:

• Create a Statement object for each result set that is to be returned to
the client.

• Do not explicitly close ResultSet and Statement objects. Adaptive
Server closes them automatically.

➤ Note
Adaptive Server ensures that ResultSet and Statement objects are not closed

by garbage collection unless and until the affected result sets have been

processed and returned to the client.

• If some rows of the result set are fetched by calls of the Java next()

method, only the remaining rows of the result set are returned to
the client.

Creating the SQLJ stored procedure

When you create a SQLJ stored procedure that returns result sets,
you must specify the maximum number of result sets that can be
returned. In this example, the ranked_emps procedure returns a single
result set.

create procedure ranked_emps(region integer)

4-72 Using Java Methods as SQL Functions and Stored Procedures

SQLJ stored procedures Adaptive Server version 12.5 Beta

dynamic result sets 1
language java parameter style java
external name 'Routines3.orderedEmps'

If ranked_emps generates more result sets than are specified by create

procedure, a warning displays and the procedure returns only the
number of result sets specified.

When you include the dynamic result sets clause with an integer value >
0, and you do not specify the method signature, Adaptive Server
infers a method signature that includes a trailing java.sql.ResultSet

parameter. In this instance, the system infers a method signature of int

and java.sql.ResultSet[].

➤ Note
Some restrictions apply to method overloading when you infer a method

signature involving result sets. See “Mapping Java and SQL datatypes” on

page 73 for a more information.

Calling the procedure

After you have installed the method’s class in the database and
created the SQLJ stored procedure that references the method, you
can call the procedure. You can write the call using any mechanism
that processes SQL result sets.

For example, to call the ranked_emps procedure using JDBC, enter the
following:

java.sql.CallableStatement stmt =
conn.prepareCall(“{call ranked_emps(?)}”);

stmt.setInt(1,3);
ResultSet rs = stmt.executeQuery();
while (rs.next()) {

String name = rs.getString(1);
int.region = rs.getInt(2);
BigDecimal sales = rs.get.BigDecimal(3);
System.out.print(“Name = “ + name);
System.out.print(“Region = “ + region);
System.out.print(“Sales = “ + sales);
System.out.printIn();

The ranked_emps procedure supplies only the parameter declared in the
create procedure statement. The SQL system supplies an empty array of
ResultSet parameter and calls the Java method, which assigns the
output result set to the array parameter. When the Java method

New Features for Adaptive Server Version 12.5 4-73

Adaptive Server version 12.5 Beta Advanced topics

completes, the SQL system returns the result set in the output array
element as a SQL result set.

Deleting a SQLJ stored procedure name

You can delete the SQLJ stored procedure name for a Java method
using the drop procedure command. For example, enter:

drop procedure correct_states

which deletes the correct_states procedure name and its reference to the
Routines1.correctStates method. drop procedure does not affect the Java class
and method referenced by the procedure.

Advanced topics

The following topics present a detailed description of SQLJ topics.

Mapping Java and SQL datatypes

When you create a stored procedure or function that references a
Java method, you must make sure that SQL and Java parameters are
in datatype correspondence. This means that the datatypes of input
and output parameters or result sets cannot conflict when values are
converted from the SQL environment to the Java environment and
back again. SQLJ relies on the mapping of corresponding SQL and
Java datatypes. The rules for how this mapping takes place are
shown in Table 4-1 on page 74.

Each SQL parameter and its corresponding Java parameter must be
mappable. SQL and Java datatypes are mappable in these ways:

• A SQL datatype and a primitive Java datatype are simply mappable
if so specified in Table 4-1.

• A SQL datatype and a non-primitive Java datatype are object
mappable if so specified in Table 4-1.

• A SQL abstract datatype (ADT) and a non-primitive Java
datatype are ADT mappable if both are the same class or interface.

• A SQL datatype and a Java datatype are output mappable if the
Java datatype is an array and the SQL datatype is simply
mappable, object mappable, or ADT mappable to the Java
datatype. For example, character and String[] are output mappable.

4-74 Using Java Methods as SQL Functions and Stored Procedures

Advanced topics Adaptive Server version 12.5 Beta

• A Java datatype is result-set mappable if it is an array of the result
set-oriented class: java.sql.resultSet.

• A Java method is mappable to SQL if each of its parameters is
mappable to SQL and its result set parameters are result-set
mappable and the return type is either mappable (functions) or
void or int (procedures).

Support for int return types is a Sybase extension of the SQLJ Part 1
standard.

Table 4-1: Simply and object mappable SQL and Java datatypes

Implicit or explicit Java method signature

When you create a SQLJ function or stored procedure, you specify a
SQL signature and, either implicitly or explicitly, a Java method
signature. For example, in the create procedure statement for the
correctStates stored procedure the SQL stored procedure signature is
“old char(20), not_old char(20)”:

SQL datatype Corresponding Java datatypes

Simply mappable Object mappable

character String

nchar String

varchar String

nvarchar String

text String

numeric java.math.BigDecimal

decimal java.math.BigDecimal

money java.math.BigDecimal

smallmoney java.math.BigDecimal

bit boolean Boolean

tinyint byte Integer

smallint short Integer

integer int Integer

real float Float

float double Double

double precision double Double

binary byte[]

varbinary byte[]

datetime java.sql.Timestamp

smalldatetime java.sql.Timestamp

New Features for Adaptive Server Version 12.5 4-75

Adaptive Server version 12.5 Beta Advanced topics

create procedure correct_states(old char(20),
not_old char(20))

modifies sql data
language java parameter style java
external name ‘Routines1.correctStates’

The Java method signature is not explicitly specified. If it were, it
would follow the method name in the create procedure statement.
Adaptive Server infers the Java method signature from the SQL
stored procedure signature. Table 4-1 tells us that the corresponding
Java datatype for character is String. Thus the inferred Java method
signature is String, String and the inferred external name clause is:

...
external name 'Routines1.correctStates

(String, String)'

Adaptive Server looks for an existing method according to normal
Java overloading conventions.

• You can either explicitly specify a Java method signature or allow
Adaptive Server to infer the method signature for datatypes that
are:

• Simply mappable

• ADT mappable

• Output mappable

• Result-set mappable

Typically, you will let Adaptive Server infer the Java method
signature according to Table 4-1 on page 74, but you must explicitly
specify the Java method signature for datatypes that are object
mappable. Otherwise, Adaptive Server infers the primitive, simply
mappable datatype.

For example, the Routines5.job2 method contains a parameter of type int.
(See “Handling null argument values” on page 58 .) When creating a
function referencing that method, Adaptive Server will infer a Java
signature of int, and you need not specify it.

However, suppose the parameter of Routines5.job2 were Java Integer,
which is the object-mappable type. For example:

public class Routines5 {
public static String job22(Integer jc)

throws SQLException ...

Then, you would need to specify the Java method signature when
you create a function that references it:

4-76 Using Java Methods as SQL Functions and Stored Procedures

Advanced topics Adaptive Server version 12.5 Beta

create function job_of22(jc integer)
...
external name 'Routines5.job2(java.lang.Integer)'

You can also specify an empty Java method signature. For example:

create function job_of22(jc integer)
...
external name 'Routines5.job2()'

In this case, Adaptive Server does not infer a method signature from
the SQL function signature. Rather, Adaptive Server looks for an
existing method Routines5.job2 with no parameters.

Ensuring signature validity

If an installed class has been modified, Adaptive Server checks to
make sure that the method signature is still valid when you invoke a
SQLJ procedure or function that references that class. If you have
deleted a class from the database or reinstalled another class in its
place, with an invalid method signature, the SQLJ routine will fail.

Using the command main method

In a Java client, you typically begin Java applications by running the
Java Virtual Machine (VM) on the command main method of a class.
The JDBCExamples class, for example, contains a main method. When
you execute the class from the command line as in the following:

java JDBCExamples

it is the command main method that executes.

➤ Note
You cannot reference a Java main method in a SQLJ create function statement.

If you reference a Java main method in a SQLJ create procedure statement,
the command main method must have the Java method signature
String[] as in:

public static void main(java.lang.String[]) {

...

}

If the Java method signature is specified in the create procedure

statement, it must be specified as (java.lang. String[]) . If the Java

New Features for Adaptive Server Version 12.5 4-77

Adaptive Server version 12.5 Beta Advanced topics

method signature is not specified, it is assumed to be
(java.lang. String[]).

If the SQL procedure signature contains parameters, those
parameters must be either char or varchar. At runtime, they are passed
as a Java array of String.

Each argument you provide to the SQLJ procedure must be char,
varchar, or a literal string because it is passed to the main method as an
element of the java.lang.String array. You cannot use the dynamic result sets

clause when creating a main procedure.

Returning result sets

When you use SQLJ stored procedures to return result sets:

• The referenced method must include parameters of the
java.sql.ResultSet class—one for each result set to be returned.

• The create procedure statement includes the dynamic result sets clause and
an integer that specifies the maximum number of result sets that
can be returned.

• The Java method signature can be implicit or explicit. It specifies
the corresponding Java datatypes for the SQL stored procedure
signature: simply mappable, object mappable, ADT mappable, or
output mappable Java datatypes.

 If the Java method signature is explicit, you must include a ResultSet[]

method for each expected result set.

• Some restrictions apply:

- If you specify an explicit Java method signature, you must
include the trailing result sets in the signature.

create procedure ranked_emps (region integer)
dynamic result sets 1
language java parameter style java
external name ‘Routines3.orderedEmps

(int, java.sql.ResultSet[])’

In this case, the parameter types are resolved using normal Java
overloading conventions.

- If you specify an implicit Java method signature, the system
infers a partial Java signature for the SQL parameters.

4-78 Using Java Methods as SQL Functions and Stored Procedures

SQLJ standards and Sybase proprietary-implementation differences Adaptive Server version 12.5 Beta

create procedure ranked_emps (region integer)
dynamic result sets 1
language java parameter style java
external name 'Routines3.orderedEmps'

In this case, the parameter types cannot be resolved using normal
Java overloading conventions. The system infers a method signature
of int and java.sql.ResultSet[], but it cannot distinguish between methods
with signatures of int and different numbers of java.sql.ResultSet[]

parameters.

SQLJ standards and Sybase proprietary-implementation differences

This section describes differences between SQLJ Part 1 standard
specifications and the Sybase proprietary implementation for SQLJ
stored procedures and functions.

Table 4-2 describes Adaptive Server enhancements to the SQLJ
implementation.

Table 4-2: Sybase enhancements

Table 4-3 describes SQLJ standard features not included in the
Sybase implementation.

Table 4-3: SQLJ features not supported

Category SQLJ standard Sybase implementation

create procedure andcreate function
commands

Supports only Java methods that do
not return values. The methods must
have void return type.

Supports Java methods that allow an
integer value return. The methods
referenced increate procedure can
have either void or integer return
types.

create procedure andcreate function
commands

Supports only SQL datatypes in
create procedure or create function
parameter list.

Supports SQL datatypes and non-
primitive Java datatypes as abstract
data types (ADTs).

create function command Does not support implicit SQL
conversion to SQLJ routine
invocations.

Supports implicit SQL conversion to
SQLJ routine invocations.

drop procedure anddrop function
commands

Requires complete command name:
drop procedure or drop function.

Supports complete function name
and abridged names:drop proc and
drop func.

SQLJ category SQLJ standard Sybase implementation
create function command Allows users to specify the same

SQL name for multiple SQLJ
functions.

Requires unique names for all stored
procedure and functions.

New Features for Adaptive Server Version 12.5 4-79

Adaptive Server version 12.5 Beta SQLJ standards and Sybase proprietary-implementation differences

Table 4-4 describes the SQLJ standard features supported in part by
the Sybase implementation.

Table 4-4: SQLJ features partially supported

Table 4-5 describes the SQLJ implementation-defined features in the
Sybase implementation.

Table 4-5: SQLJ features defined by the implementation

utilities Supportssqlj.install_jar,
sqlj.replace_jar, sqlj.remove_jar, and
similar utilities to install, replace,
and remove JAR files.

Supports theinstalljava utility and
theremove java Transact-SQL
command to perform similar
functions.

SQLJ category SQLJ standard Sybase implementation

create procedure andcreate function
commands

Allows users to install different
classes with the same name in the
same database if they are in different
JAR files.

Requires unique class names in the
same database.

create procedure andcreate function
commands

Supports the key wordsno sql,
contains sql, reads sql data, and
modifies sql data to specify the SQL
operations the Java method can
perform.

Supportsmodifies sql data only.

create procedure command Supportsjava.sql.ResultSet and the
SQL/OLB iterator declaration.

Supportsjava.sql.ResultSet only.

drop procedure anddrop function
commands

Supports the key wordrestrict, which
requires the user to drop all SQL
objects (tables, views, and routines)
that invoke the procedure or function
before dropping the procedure or
function.

Does not support therestrict key
word and functionality.

SQLJ category SQLJ standard Sybase implementation

create procedure andcreate function
commands

Supports thedeterministic |
not deterministic keywords, which
specify whether or not the procedure
or function always returns the same
values for theout andinout
parameters and the function result.

Supports only the syntax for
deterministic | not deterministic, not
the functionality.

create procedure andcreate function
commands

The validation of the mapping
between the SQL signature and the
Java method signature can be
performed either when thecreate
command is executed or when the
procedure or function is invoked.
The implementation defines when
the validation is performed.

If the reference class has been
changed, performs all validations
when thecreate command is
executed.

SQLJ category SQLJ standard Sybase implementation

4-80 Using Java Methods as SQL Functions and Stored Procedures

Commands, utilities, and system stored procedures Adaptive Server version 12.5 Beta

 Commands, utilities, and system stored procedures

This section provides syntax and usage information for the new and
enhanced Transact-SQL statements, utilities, and system stored
procedures that support SQLJ features.

New statements:

• create function Transact-SQL command

• drop function Transact-SQL command

Enhanced statements:

• create procedure Transact-SQL command

• sp_depends system procedure

• drop procedure Transact-SQL command

• sp_helprotect system procedure

• installjava utility

• remove java Transact-SQL command

create procedure andcreate function
commands

Can specify thecreate procedure or
create function commands within
deployment descriptor files or as
SQL DDL statements. The
implementation defines which way
(or ways) the commands are
supported.

Supportscreate procedure and
create function as SQL DDL
statements outside of deployment
descriptors.

Invoking SQLJ routines When a Java method executes a SQL
statement, any exception conditions
are raised in the Java method as a
Java exception of the
Exception.SQLException subclass.
The effect of the exception condition
is defined by the implementation.

Follows the rules for NestedSQL.

Invoking SQLJ routines The implementation defines whether
a Java method called using a SQL
name executes with the privileges of
the user who created the procedure
or function or those of the invoker of
the procedure or function.

SQLJ procedures and functions
inherit the security features of SQL
stored procedures and Java-SQL
functions.

drop procedure anddrop function
commands

Can specify thedrop procedure or
drop function commands within
deployment descriptor files or as
SQL DDL statements. The
implementation defines which way
(or ways) the commands are
supported.

Supportscreate procedure and
create function as SQL DDL
statements outside of deployment
descriptors.

SQLJ category SQLJ standard Sybase implementation

New Features for Adaptive Server Version 12.5 4-81

Adaptive Server version 12.5 Beta Commands, utilities, and system stored procedures

• sp_helpjava system procedure

• sp_help system procedure

4-82 Using Java Methods as SQL Functions and Stored Procedures

create function Adaptive Server version 12.5 Beta

create function

Description

Creates a user-defined function by adding a SQL wrapper to a Java
static method. Can return a value defined by the method.

Syntax

create function [owner.] sql_function_name
([sql_parameter_name sql_datatype

[(length)| (precision [, scale])]
[, sql_parameter_name sql_datatype

[(length) |
(precision [, scale]) ...]])

returns sql_datatype
[(length)| (precision [, scale])]

[modifies sql data]
[returns null on null input |

called on null input]
[deterministic | not deterministic]
[exportable]
language java
parameter style java
external name ' java_method_name

[([java_datatype [, java_datatype ...]])]'

Parameters

sql_function_name – Is the Transact-SQL name of the function. It must
conform to the rules for identifiers and cannot be a variable.

sql_parameter_name Is the name of an argument to the function. The
value of each input parameter is supplied when the function is
executed. Parameters are optional; a SQLJ function need not take
arguments.

Parameter names must conform to the rules for identifiers. If the
value of a parameter contains non-alphanumeric characters, it must
be enclosed in quotes. This includes object names qualified by a
database name or owner name, since they include a period. If the
value of the parameter begins with a numeric character, it also must
be enclosed in quotes.

sql_datatype [(length) | (precision [, scale])] – Is the Transact-SQL
datatype of the parameter. See the “create procedure” in the Adaptive
Server Enterprise Reference Manual for more information about these
options.

New Features for Adaptive Server Version 12.5 4-83

Adaptive Server version 12.5 Beta create function

sql_datatype – is the SQL procedure signature.

returns sql_datatype Specifies the result datatype of the function.

modifies sql data– Indicates that the Java method invokes SQL
operations, reads, and modifies SQL data in the database. This is the
default implementation.

deterministic | not deterministic – Supported for syntactic
compatibility with the ANSI standard. Not implemented.

exportable – Specifies that the procedure is to be run on a remote
server using the Adaptive Server Omni feature. Both the procedure
and the method it is built on must reside on the remote server.

language java – Specifies that the external routine is written in Java.
This is a required clause for SQLJ functions.

parameter style java – Specifies that the parameters passed to the
external routine at runtime are Java parameters. This is a required
clause for SQLJ functions.

external – Indicates that create function defines a SQL name for an
external routine written in a programming language other than SQL.

name – Specifies the name of the external routine (Java method). The
specified name—‘java_method_name [java_datatype[{, java_datatype}

...]]’—is a character-string literal and must be enclosed in single
quotes.

java_method_name – Specifies the name of the external Java method.

java_datatype – Specifies a Java datatype that is mappable or result-set
mappable. This is the Java method signature.

Permissions

Only the Database Owner can execute create function. The Database
Owner cannot transfer permission for create function.

4-84 Using Java Methods as SQL Functions and Stored Procedures

drop function Adaptive Server version 12.5 Beta

drop function

Description

Removes a SQLJ user-defined function.

Syntax

drop func[tion] [owner.]function_name
[, [owner.]function_name] ...

Parameters

[owner.]function_name – Is the SQL name of a SQLJ function.

Examples

drop function findnum

Deletes the SQLJ function findnum.

Usage

• Adaptive Server checks the existence of a function each time a
user or a program executes that function.

• drop function removes only user-created functions from the current
database. It does not remove system functions.

Permissions

Only the Database Owner can execute drop function.

New Features for Adaptive Server Version 12.5 4-85

Adaptive Server version 12.5 Beta create procedure

create procedure

Description

Creates a stored procedure or extended stored procedure by adding
a SQL wrapper to a Java static method. Can accept one or more user-
supplied parameters and return result sets and output parameters.

Syntax

create procedure [owner .] sql_procedure_name
([[in | out | inout] sql_parameter_name

sql_datatype [(length) |
(precision [, scale])]

[, in | out | inout] sql_parameter_name
sql_datatype [(length) |
(precision [, scale]) ...])

[modifies sql data]
[dynamic result sets integer]
[deterministic | not deterministic]
language java
parameter style java
external name ' java_method_name

[([java_datatype [, java_datatype ...]])]'

Parameters

sql_procedure_name – Is the Transact-SQL name of the procedure. It
must conform to the rules for identifiers and cannot be a variable.
Specify the owner’s name to create another procedure of the same
name owned by a different user in the current database. The default
value for owner is the current user.

in | out | inout – Specifies the mode of the listed parameter. in

indicates an input parameter; out indicates an output parameter; and
inout indicates a parameter that is both an input and an output
parameter. The default mode is in.

sql_parameter_name – Is the name of an argument to the procedure.
The value of each input parameter is supplied when the procedure is
executed. Parameters are optional; a SQLJ stored procedure need not
take arguments.

Parameter names must conform to the rules for identifiers. If the
value of a parameter contains non-alphanumeric characters, it must
be enclosed in quotes. This includes object names qualified by a
database name or owner name, since they include a period. If the

4-86 Using Java Methods as SQL Functions and Stored Procedures

create procedure Adaptive Server version 12.5 Beta

value of the parameter begins with a numeric character, it also must
be enclosed in quotes.

sql_datatype [(length) | (precision [, scale])] – Is the Transact-SQL
datatype of the parameter. See “create procedure” in the Adaptive
Server Enterprise Reference Manual for more information about these
options.

sql_datatype is the SQL procedure signature.

modifies sql data – Indicates that the Java method invokes SQL
operations, reads, and modifies SQL data in the database. This is the
default.

dynamic result sets integer – Specifies that the Java method can return
SQL result sets. integer specifies the maximum number of result sets
the method can return. This value is implementation-defined.

deterministic | not deterministic – This syntax is supported for
compatibility with other SQLJ-compliant vendors. Use of these
keywords effects no action.

language java – Specifies that the external routine is written in Java.
This is a required clause for SQLJ stored procedures.

parameter style java – Specifies that the parameters passed to the
external routine at runtime are Java parameters. This is a required
clause for SQLJ stored procedures.

external – Indicates that create procedure defines a SQL name for an
external routine written in a programming language other than SQL.

name – Specifies the name of the external routine (Java method). The
specified name—‘java_method_name [java_datatype[{, java_datatype}

...]]’—is a character-string literal and must be enclosed in single
quotes.

java_method_name – Specifies the name of the external Java method.

java_datatype – Specifies a Java datatype that is mappable or result-set
mappable. This is the Java method signature.

Examples

create procedure get_emps ()
language java parameter style java
external name “Example1.getEmps”

This example creates the SQLJ procedure get_emps, with no input or
output parameters, on the method Example1.getEmps.

New Features for Adaptive Server Version 12.5 4-87

Adaptive Server version 12.5 Beta create procedure

Usage

Permissions

create procedure permission defaults to the Database Owner, who can
transfer it to other users. Permission to use a procedure must be
granted explicitly with the grant command and may be revoked with
the revoke command.

See the Transact-SQL command “create procedure” in the Adaptive Server
Enterprise Reference Manual for detailed information about
permissions and usage.

4-88 Using Java Methods as SQL Functions and Stored Procedures

drop procedure Adaptive Server version 12.5 Beta

drop procedure

Description

Removes a Transact-SQL or SQLJ stored procedure.

Syntax

drop proc[edure] [owner .] procedure_name
[, [owner .] procedure_name] ...

Parameters

[owner.]procedure_name – Is the name of the procedure to drop.
Specify the owner’s name to drop a procedure of the same name
owned by a different user in the current database. The default value
for owner is the current user.

Usage

The syntax and use of drop procedure is the same for Transact-SQL and
SQLJ procedures. See drop procedure in the Adaptive Server Enterprise
Reference Manual for usage information, examples, and permissions.

New Features for Adaptive Server Version 12.5 4-89

Adaptive Server version 12.5 Beta installjava

installjava

Description

Installs JAR files in the database from a client operating system file.

Syntax

installjava -f file_name
[-new | -update]
[-j jar_name]

Usage

Changes/enhancements for Adaptive Server version 12.5.beta:

• You cannot install a new JAR file in the database if the installation
of that file causes an installed class, referenced by a procedure or
function, to be removed. If you install such a JAR, an exception is
raised when the SQLJ routine is called.

• You cannot install a new JAR file in the database if the installation
of that file contains a replacement class for an installed class,
referenced by a procedure or function, that does not have a valid
signature for the referenced procedure or function. If you install
such a JAR, an exception is raised.

For complete syntax and usage information on this utility, see installjava

in the Adaptive Server Reference Manual.

4-90 Using Java Methods as SQL Functions and Stored Procedures

remove java Adaptive Server version 12.5 Beta

remove java

Description

Removes one or more Java-SQL classes, packages, or JARs from a
database.

Syntax

remove java
class class_name [, class_name]...
| package package_name [, package_name]...
| jar jar_name [, jar_name]...[retain classes]

Usage

Changes/enhancements for Adaptive Server version 12.5.beta:

You cannot remove a Java-SQL class if that class is directly
referenced by a SQLJ stored procedure or function.

To remove a Java-SQL class from the database, you must:

- Delete all SQLJ stored procedures or functions that directly
reference the class using drop procedure and/or drop function.

- Delete the Java-SQL class from the database using remove java.

For complete syntax and usage information on this Transact-SQL
command, see remove java in the Adaptive Server Reference Manual.

New Features for Adaptive Server Version 12.5 4-91

Adaptive Server version 12.5 Beta sp_depends

sp_depends

Description

Displays information about database object dependencies. Lists the
database objects that depend on the specified object and the database
objects upon which the specified object depends.

Syntax

sp_depends objname

Parameters

objname – The name of a table, view, Transact-SQL stored procedure,
trigger, SQLJ stored procedure, SQLJ function, default (whether
created using a create statement or using the create table statement),
check constraint, or rule to be examined for dependencies.

You cannot specify a database name. Use owner names if the object
owner is not the user running the command and not the Database
Owner.

Examples

sp_depends region_of

Lists objects referenced by the region_of SQLJ function and objects that
reference the region_of SQLJ function.

Usage

Changes and enhancements for Adaptive Server Enterprise
12.5.beta:

• SQLJ stored procedures and SQLJ functions are included as
database objects for which you can list dependencies. The only
dependencies of SQLJ stored procedures and SQLJ functions are
Java classes.

• SQLJ stored procedures and SQLJ functions will be listed as
dependencies of other database objects.

• If objname is a SQLJ stored procedure or SQLJ function, sp_depends

lists the Java class in the routine’s external name—not classes
specified as the return type or as datatypes in the parameter list.

• If objname is a rule, default, or check constraint, sp_depends displays
the table to which the rule, default, or check constraint is bound.

4-92 Using Java Methods as SQL Functions and Stored Procedures

sp_depends Adaptive Server version 12.5 Beta

For complete syntax and usage information on this system
procedure, see sp_depends in the Adaptive Server Reference Manual

New Features for Adaptive Server Version 12.5 4-93

Adaptive Server version 12.5 Beta sp_help

sp_help

Description

Reports information about a database object (any object listed in
sysobjects) and about system or user-defined datatypes.

Syntax

sp_help [objname]

Parameters

objname

The name of an object listed in sysobjects.

Examples

sp_help region_of

Displays information about the SQLJ function region_of.

Usage

Changes/enhancements for Adaptive Server version 12.5.beta
provide parameter information on two new object types:

• SQLJ functions

• SQLJ procedures

For complete syntax and usage information on this system
procedure, see sp_help in the Adaptive Server Reference Manual.

4-94 Using Java Methods as SQL Functions and Stored Procedures

sp_helpjava Adaptive Server version 12.5 Beta

sp_helpjava

Description

Displays information about Java classes and associated JARs that are
installed in the database.

Syntax

sp_helpjava ["class" [, java_class_name [, “detail” |
“depends”]] | "jar"
[, jar_name [, “depends”]]]

Parameters

"class" | "jar" – Specifies whether to display information about a
class or a JAR. Both class and jar are keywords, so the quotes are
required.

java_class_name – The name of the class about which you want
information. The class must be a system class or a user-defined class
that is installed in the database.

“detail” | “depends” – detail lists detailed information about the
specified class.

depends lists all the database objects that depend on the specified
class or classes in the specified JAR, including SQLJ functions, SQLJ
procedures, views, Transact-SQL procedures, and tables.

Both detail and depends are keywords, so the quotes are required.

jar_name – The name of the JAR for which you want to see
information. The JAR must be installed in the database using installjava.

Usage

Enhancements for Adaptive Server version 12.5.beta:

• The depends keyword lists dependencies of specified class or
classes if the class is listed in the external name clause or used as a
datatype.

For complete syntax and usage information on this system
procedure, see sp_helpjava in the Adaptive Server Reference Manual.

New Features for Adaptive Server Version 12.5 4-95

Adaptive Server version 12.5 Beta sp_helprotect

sp_helprotect

Description

Reports on permissions for database objects, users, groups, or roles.

Syntax

sp_helprotect [name [, username [, “grant”
[, “none” | “granted” | “enabled” | role_name

]]]]

Parameters

name – Is either the name of the table, view, stored procedure, SQLJ
stored procedure, SQLJ function, or the name of a user, user-defined
role, or group in the current database. If you do not provide a name,
sp_helprotect reports on all permissions in the database.

username – A user’s name in the current database.

grant – Displays the privileges granted to name with grant option.

none – Ignores roles granted to the user when determining
permissions granted.

granted – Includes information on all roles granted to the user when
determining permissions granted.

enabled – Includes information on all roles activated by the user when
determining permissions granted.

role_name – Displays permission information for the specified role
only, regardless of whether this role has been granted to the user.

Usage

Enhancements for Adaptive Server version 12.5.beta:

• Lists permissions for SQLJ stored procedures.

• Advises that SQLJ function access is public:

Implicit grant to public for SQLJ functions.

For complete syntax and usage information on this system
procedure, see sp_helprotect in the Adaptive Server Reference Manual

4-96 Using Java Methods as SQL Functions and Stored Procedures

sp_helprotect Adaptive Server version 12.5 Beta

New Features for Adaptive Server Version 12.5 5-97

5 XML in the Database 5.

This chapter uses examples to describe how you can use Java tools to
access Extensible Markup Language (XML) documents in Adaptive
Server.

➤ Note
isql can display only the first 50 characters of a result set that is derived from

XML data. However, the isql examples in this chapter display the entire

result set for purpose of illustration. To see the entire result set for any of the

examples, use xml.XqlDriver to run the query. xml.XqlDriver is explained in

“Querying XML documents using xml.XqlDriver” on page 108.

Introduction

Like Hypertext Markup Language (HTML), XML is a markup
language and a subset of Standardized General Markup Language
(SGML). XML, however, is more complete and disciplined, and it
allows you to define your own application-oriented markup tags.
These properties make XML particularly suitable for data
interchange.

You can generate XML-formatted documents from data stored in
Adaptive Server and, conversely, store XML documents and data
extracted from them in Adaptive Server. You can also use Adaptive
Server to search XML documents stored on the Web.

Adaptive Server uses the XML Query Language (XQL) to search
XML documents. XQL is a path-based query language that searches
the XML documents using the XML structure.

Many of the XML tools needed to generate and process XML
documents are written in Java. Java in Adaptive Server provides a

Topic Page

Introduction page 5-97

An overview of XML page 5-98

Installing XML in Adaptive Server page 5-105

Querying XML documents page 5-108

Using XQL page 5-112

A simple example for a specific result set page 5-124

A customizable example for different result sets page 5-139

5-98 XML in the Database

An overview of XML Adaptive Server version 12.5 Beta

good base for XML-SQL applications using both universal and
application-specific tools.

This chapter first provides a general discussion of XML and how you
can use XML in the Adaptive Server database. It then presents a
series of examples that you can use as guidelines for using XML in
your Adaptive Server database.

Source code and Javadoc

The source code for the Java classes described in this chapter is
available in $SYBASE/$SYBASE_ASE/sample/JavaSql (UNIX) or
%SYBASE%\Ase-12_5\sample\JavaSql (Windows NT), which also
contains Javadoc-generated HTML pages with the specifications of
the referenced packages, classes, and methods.

References

This chapter presents a overview of XML. For detailed information,
refer to these Web documents:

• World Wide Web Consortium (W3C), at http://www.w3.org

• W3C, Document Object Model (DOM), at
http://www.w3.org/DOM/

• W3C, Extensible Markup Language (XML), at
http://www.w3.org/XML/

• W3C, Extensible Stylesheet Language (XSL), at
http://www.w3.org/TR/WD-xsl/

• Sun Microsystems, Inc, Java Project X Technology Release 1, at
http://developer.java.sun.com/developer/earlyAccess/xml/index.
html

• Megginson Technologies, SAX 1.0: The Simple API for XML, at
http://www.megginson.com/SAX/

An overview of XML

XML is a markup language and subset of SGML. It was created to
provide functionality that goes beyond that of HTML for Web
publishing and distributed document processing.

XML is less complex than SGML, but more complex and flexible than
HTML. Although XML and HTML can usually be read by the same

New Features for Adaptive Server Version 12.5 5-99

Adaptive Server version 12.5 Beta An overview of XML

browsers and processors, XML has characteristics that make it better
able to share documents:

• XML documents possess a strict phrase structure that makes it
easy to find and access data. For example, opening tags of all
elements must have a corresponding closing tag, for example,
<p>A paragraph.<\p>.

• XML lets you develop and use tags that distinguish different
types of data, for example, customer numbers or item numbers.

• XML lets you create an application-specific document type, which
makes it possible to distinguish one kind of document from
another.

• XML documents allow different views of the XML data. XML
documents contain only markup and content; they do not contain
formatting instructions. Formatting instructions are normally
provided on the client using Extensible Style Language (XSL)
specifications.

You can store XML documents in Adaptive Server using the
following formats:

• As XML in a text or image column

• As XML in a char or varchar column that is less than 255
characters long

• As parsed XML in an image column

A sample XML document

The sample Order document is designed for a purchase order
application. Customers submit orders, which are identified by a date
and a customer ID. Each order item has an item ID, an item name, a
quantity, and a unit designation.

It might display on screen like this:

ORDER

Date: July 4, 1999

Customer ID: 123

Customer Name: Acme Alpha

5-100 XML in the Database

An overview of XML Adaptive Server version 12.5 Beta

Table 5-1: Items:

The following is one representation of this data in XML:

<?xml version="1.0"?>
<Order>

 <Date>1999/07/04</Date>
 <CustomerId>123</CustomerId>
 <CustomerName>Acme Alpha</CustomerName>

 <Item>
 <ItemId> 987</ItemId>
 <ItemName>Coupler</ItemName>
 <Quantity>5</Quantity>
 </Item>

<Item>
 <ItemId>654</ItemId>
 <ItemName>Connector</ItemName>
 <Quantity unit="12">3</Quantity>
 </Item>

<Item>
 <ItemId>579</ItemId>
 <ItemName>Clasp</ItemName>
 <Quantity>1</Quantity>
 </Item>

</Order>

The XML document for the order data consists of these parts:

• The XML declaration, <?xml version=“1.0”?>, which identifies
Order as an XML document.

XML documents are represented as character data. In each
document, the character encoding (character set) is specified, either
explicitly or implicitly. To explicitly specify the character set, include
it in the XML declaration. For example:

<?xml version=”1.0” encoding=”ISO-8859-1”>

If you do not include the character set in the XML declaration, the
default, UTF8, is used.

Item ID Item Name Quantity

987 Coupler 5

654 Connector 3 dozen

579 Clasp 1

New Features for Adaptive Server Version 12.5 5-101

Adaptive Server version 12.5 Beta An overview of XML

➤ Note
When the default character sets of the client and server differ, Adaptive

Server bypasses normal character set translations so that the declared

character set continues to match the actual character set. See “Character

sets and XML data” on page 104.

• User-created element tags such as <Order>…</Order>,
<CustomerId>…</CustomerId>, <Item>….</Item>. In XML
documents, all opening tags must have a corresponding closing
tag.

• Text data such as “Acme Alpha,” “Coupler,” and “579.”

• Attributes embedded in element tags such as <Quantity unit =
“12”>. This kind of coding allows you the flexibility to customize
elements.

A document with these parts, and with the element tags strictly
nested, is called a well-formed XML document. Note that in the
example above, element tags describe the data they contain, and the
document contains no formatting instructions.

XML document types

A document type definition (DTD) defines the structure of a class of
XML documents, making it possible to distinguish between classes.
A DTD is a list of element and attribute definitions unique to a class.
Once you have set up a DTD, you can reference that DTD in another
document, or embed it in the XML document.

Here is another example of an XML document:

<?xml version="1.0"?>
 <Info>

<OneTag>1999/07/04</OneTag>
<AnotherTag>123</AnotherTag>
<LastTag>Acme Alpha</LastTag>

 <Thing>
<ThingId> 987</ThingId>
<ThingName>Coupler</ThingName>
<Amount>5</Amount>
<Thing/>

5-102 XML in the Database

An overview of XML Adaptive Server version 12.5 Beta

 <Thing>
<ThingId>654</ThingI
<ThingName>Connecter</ThingNam

 </Thing>

<Thing>
<ThingId>579</ThingId>
<ThingName>Clasp</ThingName>
<Amount>1</Renew>

</Thing>
 </Info>

This example, called Info, is a well-formed document and has the
same structure and data as the XML Order document. Nonetheless,
it would not be recognized by a processor designed for Order
documents because each have different DTDs.

The DTD for XML Order documents is:

<!ELEMENT Order (Date, CustomerId, CustomerName,
Item+)>

 <!ELEMENT Date (#PCDATA)>
 <!ELEMENT CustomerId (#PCDATA)>
 <!ELEMENT CustomerName (#PCDATA)>
 <!ELEMENT Item (ItemId, ItemName, Quantity)>
 <!ELEMENT ItemId (#PCDATA)>
 <!ELEMENT ItemName (#PCDATA)>
 <!ELEMENT Quantity (#PCDATA)>
 <!ATTLIST Quantity units CDATA #IMPLIED>

This DTD specifies that:

• An order must consist of: a date, a customer ID, a customer name,
and one or more items. “+” indicates one or more items. These
items are required. A question mark indicates an optional
element (for example, “CustomerName?”). An asterisk indicates
that an element can occur zero or more times (for example,
“Item*”).

• Elements defined by “(#PCDATA)” are character text.

• The “<ATTLIST…>” definition specifies that quantity elements
have a “units” attribute; the “#IMPLIED” specification indicates
that the “units” attribute is optional.

The character text of XML documents is not constrained. For
example, there is no way to specify that the text of a quantity element
should be numeric, and thus the following would be valid:

<Quantity unit=”Baker’s dozen”>three</Quantity>
<Quantity unit=”six packs”>plenty</Quantity>

New Features for Adaptive Server Version 12.5 5-103

Adaptive Server version 12.5 Beta An overview of XML

Restrictions on the text of elements are handled by applications that
process XML data.

An XML’s DTD must follow the <?xml version="1.0"?> instruction.
You can either include the DTD within your XML document, or you
can reference an external DTD.

• To reference a DTD externally, use something like this:

<?xml version="1.0"?>
 <!DOCTYPE Order SYSTEM "Order.dtd”>
 <Order>
…
 </Order>

• Here’s how an embedded DTD might look:

<?xml version="1.0"?>
 <!DOCTYPE Order [
 <!ELEMENT Order (Date, CustomerId, CustomerName,

Item+)>
 <!ELEMENT Date (#PCDATA)
 <!ELEMENT CustomerId (#PCDATA)>
 <!ELEMENT CustomerName (#PCDATA)>
 <!ELEMENT Item (ItemId, ItemName, Quantity)>
 <!ELEMENT ItemId (#PCDATA)>
 <!ELEMENT ItemName (#PCDATA)>
 <!ELEMENT Quantity (#PCDATA)>
 <!ATTLIST Quantity units CDATA #IMPLIED>

]>
 <Order>

<Date>1999/07/04</Date>
<CustomerId>123</CustomerId>
<CustomerName>Acme Alpha</CustomerName>

 <Item>
…

</Item>
 </Order>

DTDs are not required for XML documents. However, a valid XML
document has a DTD and conforms to that DTD.

XSL: formatting XML information

You can use XSL to format XML documents. XSL specifications (style
sheets) consist of a set of rules that define the transformation of an
XML document into either an HTML document or a different XML
document:

5-104 XML in the Database

An overview of XML Adaptive Server version 12.5 Beta

• XSL specifications that transform an XML document into HTML
can specify normal HTML formatting details in the output
HTML.

• XSL specifications that transform an XML document into another
XML document can map the input XML document to an output
XML document with different element names and phrase
structure.

You can create your own style sheets for the display of particular
classes for particular applications. XSL is normally used with
presentation applications rather than with applications for data
interchange or storage.

Character sets and XML data

If the declared character sets of your client and server differ, you
must take care when declaring the character set of your XML
documents.

Every XML document has a character set value. If that encoding is
not declared in the XML declaration, the default value of UTF8 is
assumed. The XML processor, when parsing the XML data, reads this
value and handles the data accordingly. When the default character
set of the client and server differ, Adaptive Server bypasses normal
character set conversions to ensure that the declared character set
and the actual character set remain the same.

• If you introduce an XML document into the database by
providing the complete text in the values clause of an insert

statement, Adaptive Server translates the entire SQL statement
into the server’s character set before processing the insertion.
This is the way Adaptive Server normally translates character
text, and you must make sure that the declared character set of
the XML document matches that of the server.

• If you introduce an XML document into the database using
writetext or Open Client CT-Library or Open Client DB-Library
programs, Adaptive Server recognizes the XML document from
the XML declaration and does not translate the character set to
that of the server.

• If you read an XML document from the database, Adaptive
Server does not translate the character set of the data to that of the
client, thus preserving the integrity of the XML document.

New Features for Adaptive Server Version 12.5 5-105

Adaptive Server version 12.5 Beta An overview of XML

Installing XML in Adaptive Server

This section assumes you have already enabled Java in Adaptive
Server. For information about enabling Java, see Getting Started With
Java in this document.

installjava copies a JAR file into Adaptive Server and makes the Java
classes in that JAR file available for use in the current database. The
syntax is:

installjava
 -f file_name
 [-new | -update]
 [-j jar_name]
 ...

Where:

• file_name is the name of the JAR file you are installing in the
server.

• new informs the server this is a new file.

• update informs the server you are updating an existing JAR file.

• jar_name is the name of the JAR file from which you are retaining
or extracting the classes.

For more information about installjava , see the Utility Guide for your
platform.

To add support for XML in Adaptive Server, You must install the
xml.jar and xerces.jar files. These JAR files are located in
$SYBASE/ASE-12_5/sample/Javasql.

For example, to install the xml.jar file:

installjava -Usa -P -S server_name -f /$SYBASE/ASE
12_5/sample/Javasql/xml.jar

Setting the CLASSPATH environment variable

You must set your CLASSPATH environment variable to include the
directory that contain xerces.jar, xml.zip, and runtime.zip.To set the
CLASSPATH environment variable:

setenv CLASSPATH .:< path_to_file >

5-106 XML in the Database

An overview of XML Adaptive Server version 12.5 Beta

Retaining the JAR file

The -j option determines whether or not the JAR file is stored in the
database.

• Do not specify the -j parameter, the Adaptive Server system does
not retain any association of the classes with the JAR. This is the
default option.

• Do specify the -j parameter, Adaptive Server installs the classes
contained in the JAR in the normal manner, and then retains the
JAR and its association with the installed classes.

If you retain the JAR file:

• You can use remote to remove the JAR and all classes associated
with it. Otherwise, you must remove each class or package of
classes individually.

• Other systems may request that the class associated with a given
Java-SQL column be downloaded with the column value. If a
class retains its association with the JAR, Adaptive Server can
download the JAR, rather than individual classes.

Updating installed classes

The new and update clauses of installjava indicate whether you want
new classes to replace currently installed classes.

• If you specify new, you cannot install a class with the same name
as an existing class.

• If you specify update , you can install a class with the same name as
an existing class, and the newly installed class replaces the
existing class.

◆ WARNING!
If you alter a class used as a column data type by reinstalling a
modified version of the class, make sure that the modified class can
read and use existing objects (rows) in tables using that class as a
data type. Otherwise, you may be unable to access existing objects
without reinstalling the class.

Substitution of new classes for installed classes depends also on
whether the classes being installed or the already installed classes are
associated with a JAR. Thus:

New Features for Adaptive Server Version 12.5 5-107

Adaptive Server version 12.5 Beta XML parsers

• If you update a JAR, all classes in the existing JAR are deleted and
replaced with classes in the new JAR.

• A class can only be associated with a single JAR. You cannot
install a class in one JAR if a class of that same name is already
installed and associated with another JAR. Similarly, you cannot
install a class that is not associated with a JAR if that class is
already installed and associated with a JAR.

You can, however, install a class in a retained JAR with the same
name as an installed class not associated with a JAR. In this case, the
class not associated with a JAR is deleted and the new class of the
same name is associated with the new JAR.

If you want to reorganize your installed classes in new JARs, you
may find it easier to first disassociate the affected classes from their
JARs.

XML parsers

You can analyze XML documents and extract their data using SQL
character-string operations such as substring , charindex , and patindex .
However, it is more efficient to use Java in SQL and tools written in
Java such as XML parsers.

XML parsers can:

• Check that a document is well-formed and valid.

• Handle character-set issues.

• Generate a Java representation of a document’s parse tree.

• Build or modify a document’s parse tree.

• Generate a document’s text from its parse tree.

Many XML parsers are available with a free license or are in the
public domain. They normally implement two standard interfaces:
the Simple API for XML (SAX) and the Document Object Model
(DOM).

• SAX is an interface for parsing. It specifies input sources,
character sets, and routines to handle external references. While
parsing, it generates events so that user routines can process the
document incrementally, and it returns a DOM object that is the
parse tree of the document.

5-108 XML in the Database

Querying XML documents Adaptive Server version 12.5 Beta

• DOM is an interface for the parse tree of an XML document. It
provides facilities for stepping through and assembling a parse
tree.

Applications that use the SAX and DOM interfaces are portable
across XML parsers.

Converting a raw XML document to a parsed version

It is much more efficient to use a parsed XML document for queries.
Use the parse() method to convert and parse a raw text or image
XML document and store the result. Use the alter table command to
convert the raw XML document. For example:

alter table XMLTEXT add xmldoc IMAGE null
update XMLTEXT
set xmldoc = xml.Xql.parse(xmlcol)

This example converts the xmlcol column of the XMLTEXT table to
parsed data and stores it in the xmldoc column.

Querying XML documents

You can query XML documents from either:

• The command line – the xml.XqlDriver driver enables you to query
XML documents from the command line. This method is helpful
for developing and learning XQL queries, but is not the preferred
method for querying XML documents in a production
environment. See “Using XQL”, below, for a description of the
preferred method.

• Adaptive Server – query XML documents stored in Adaptive
Server using XQL. See “Using XQL” on page 112.

Querying XML documents using xml.XqlDriver

xml.XqlDriver allows you to parse and query XML documents using
XQL queries. xml.XqlDriver can only parse and query XML documents
stored as files on the local system. You cannot use xml.XqlDriver to parse
or query XML documents stored in a database or over the network.
xml.XqlDriver is invoked with the java command.

Because xml.XqlDriver is easily used, it can be useful for developing
XQL scripts and learning XQL. However, Sybase recommends that
you use xml.XqlDriver only as a standalone program, and not as part of

New Features for Adaptive Server Version 12.5 5-109

Adaptive Server version 12.5 Beta Querying XML documents

another Java program because xml.XqlDriver includes a main() method.
A Java program can only include one main() method, and if you
include xml.XqlDriver in another Java program that includes main() , the
program will attempt to implement both main() methods, which
causes an error in Java.

The syntax for xml.XqlDriver is:

java xml.XqlDriver
-qstring[XQL_query]
-validate [true | false]
-infile [string]
-outfile [string]
-debug
-help

Where:

• qstring specifies the XQL query.

• validate checks the validity of the XML documents.

• infile is the XML document you are querying.

• outfile is the operating system file in which you are storing the
parsed XML document

• debug allows you to debug the xml.XqlDriver program,.

• help displays the xml.XqlDriver syntax.

For information about the XQL language, see “Using XQL” on page
112.

For example, the following query selects all the book titles from
bookstore.xml:

5-110 XML in the Database

Querying XML documents Adaptive Server version 12.5 Beta

java xml.XqlDriver -qstring
"/bookstore/book/title" -infile bookstore.xml

start DTD
NAME SPACE : http://www.placeholder-name-
here.com/schema/
NAME SPACE : http://www.placeholder-name-
here.com/schema/
NAME SPACE : http://www.placeholder-name-
here.com/schema/
Query returned true and the result is

<xql_result>
<title>Seven Years in Trenton</title>
<title>History of Trenton</title>
<title>Trenton Today, Trenton Tomorrow</title>
</xql_result>

The following example lists all the author’s first names bookstore.xml
file. XQL uses a zero-based numbering system; that is, “0” specifies
the first occurrence of an element in a file.

java xml.XqlDriver -qstring "/bookstore/book/author/first-
name[0]" -infile bookstore.xml
start DTD
NAME SPACE : http://www.placeholder-name-here.com/schema/
NAME SPACE : http://www.placeholder-name-here.com/schema/
NAME SPACE : http://www.placeholder-name-here.com/schema/
Query returned true and the result is

<xql_result>
<first-name>Joe</first-name>
<first-name>Mary</first-name>
<first-name>Toni</first-name>

</xql_result>

The following lists all the authors listed in bookstore.xml whose last
name is “Bob”:

java xml.XqlDriver -qstring "/bookstore/book/author[last-
name='Bob']" -infile bookstore.xml

New Features for Adaptive Server Version 12.5 5-111

Adaptive Server version 12.5 Beta Querying XML documents

start DTD
NAME SPACE : http://www.placeholder-name-here.com/schema/
NAME SPACE : http://www.placeholder-name-here.com/schema/
NAME SPACE : http://www.placeholder-name-here.com/schema/
Query returned true and the result is

<xql_result>
<author>
<first-name>Joe</first-name>
<last-name>Bob</last-name>
<award>Trenton Literary Review Honorable

Mention</award></author>
<author>
<first-name>Mary</first-name>
<last-name>Bob</last-name>
<publication>Selected Short Stories of
<first-name>Mary</first-name>
<last-name>Bob</last-name></publication></author>
<author>
<first-name>Toni</first-name>
<last-name>Bob</last-name>
<degree from=Trenton U>B.A.</degree>

< degree from=Harvard>Ph.D.</degree>
<award>Pulizer</award>

< publication>Still in Trenton</publication>
<publication>Trenton Forever</publication></author>

</xql_result>

Validating your document

The valid option invokes a parser that makes sure the XML document
you are querying conforms to its DTD. Your XML document must
have a valid DTD before you run the validate option.

For example, this command makes sure the bookstore.xml document
conforms to its DTD:

java xml.XqlDriver -qstring "/bookstore" -validate -infile bookstore.xml

Saving result sets as parsed files using xml.XqlDriver

It is much faster to querying parsed XML files than to query plain
text XML files. The outfile option allows you to save the XML output
to a file as a parsed document. The syntax for parsing an XML file is:

java xml.XqlDriver -qstring [“ file_name ”] -infile input_file_name -
outfile new_file_name

5-112 XML in the Database

Querying XML documents Adaptive Server version 12.5 Beta

For example, to save bookstore.xml as a parsed file named
bookstore_xml.prs:

java xml.XqlDriver -qstring “/bookstore” -infile bookstore.xml -
outfile bookstore_xml.prs

Subsequent queries that use bookstore_xml.prs run much faster than
queries that use bookstore.xml. Use the parsed file name as the input
file. For example:

java xml.XqlDriver -qstring "/bookstore/book/title" -infile
bookstore_xml.prs
Query returned true and the result is

<xql_result>
<title>Seven Years in Trenton</title>
<title>History of Trenton</title>
<title>Trenton Today, Trenton Tomorrow</title>
</xql_result>

The result set is the same as the query that selected all book titles
from bookstore.xml, but xml.XqlDriver does not start the DTD. Because
the XML is already parsed, it reads the file and issues the result set
without having to parse it.

Using XQL

The XML Query Language (XQL) has been designed as a general-
purpose query language for XML. XQL is a path-based query
language for addressing and filtering the elements and text of XML
documents, and is a natural extension to the XSL syntax. XQL
provides a concise, understandable notation for pointing to specific
elements and for searching for nodes with particular characteristics.
XQL navigation is through elements in the XML tree.

This section does not discuss XQL in depth. The most common XQL
operators include:

• Child operator, / – indicates hierarchy. The following example
returns <author> elements that are children of <front> elements
from the xmlcol column of the xmlimage table:

select xml.Xql.query("/bookstore/book", xmlcol)
from xmlimage

<xql_result>
<book style=autobiography>

<title>S

New Features for Adaptive Server Version 12.5 5-113

Adaptive Server version 12.5 Beta Querying XML documents

• Descendant operator, // – indicates that the query searches
through any number of intervening levels. That is, a search using
the descendant operator finds an occurrence of an element at any
level of the XML structure. The following query finds all the
instances of <emph> elements that occur in an <excerpt>
element:

select xml.Xql.query("/bookstore/book/excerpt//emph",xmlcol)
from xmlimage

<xql_result>
<emph>I</emph>

</xql_result>

• Equals operator, = – specifies the content of an element or the
value of an attribute. The following query finds all examples
where last-name = Bob:

select xml.Xql.query("/bookstore/book/author[last-name='Bob']",
xmlcol)
from xmlimage

<xql_result>
<author>
<first-name>Joe</first-name>
<last-name>Bob</last-name>
<award>Trenton Literary Review Honorable

Mention</award></author>
<author>
<first-name>Mary</first-name>
<last-name>Bob</last-name>
<publication>Selected Short Stories of
<first-name>Mary</first-name>
<last-name>Bob</last-name></publication></author>
<author>
<first-name>Toni</first-name>
<last-name>Bob</last-name>
<degree from=Trenton U>B.A.</degree>
<degree from=Harvard>Ph.D.</degree>
<award>Pulizer</award>
<publication>Still in Trenton</publication>
<publication>Trenton

Forever</publication></author>
“</xql_result>

• Filter operator, [] – Filters the set of nodes to its left based on the
conditions inside the brackets. This example finds any
occurrences of authors whose first name is Mary that are listed in
a book element:

5-114 XML in the Database

Querying XML documents Adaptive Server version 12.5 Beta

select xml.Xql.query("/bookstore/book[author/first-name = 'Mary']",
xmlcol)
from xmlimage
<xql_result>

<book style=textbook>
<title>History of Trenton</title>
<author>
<first-name>Mary</first-name>
<last-name>Bob</last-name>
<publication>Selected Short Stories of
<first-name>Mary</first-name>
<last-name>Bob</last-name></publication></author>

<price>55</price></book>

• Subscript operator, [index_ordinal] – finds a specific instance of
an element. This example finds the second book listed in the XML
document. Remember that XQL is zero-based, so it begins
numbering at 0:

select xml.Xql.query("/bookstore/book[1]", xmlcol)
from xmlimage
Query returned true and the result is
<xql_result>

<book style=textbook>
<title>History of Trenton</title>
<author>
<first-name>Mary</first-name>
<last-name>Bob</last-name>
<publication>Selected Short Stories of
<first-name>Mary</first-name>
<last-name>Bob</last-

name></publication></author>
<price>55</price></book>

</xql_result>

• Boolean expressions – you can use Boolean expressions within
filter operators. For example, this query returns all <author>
elements that contain at least one <degree> and one <award>:

New Features for Adaptive Server Version 12.5 5-115

Adaptive Server version 12.5 Beta Querying XML documents

select xml.Xql.query("/bookstore/book/author[degree and award]",
xmlcol)
from xmlimage

<xql_result>
<author>
<first-name>Toni</first-name>
<last-name>Bob</last-name>
<degree from=Trenton U>B.A.</degree>
<degree from=Harvard>Ph.D.</degree>
<award>Pulizer</award>
<publication>Still in Trenton</publication>
<publication>Trenton

Forever</publication></author>
</xql_result>

Query structures that affect performance

The placement of the where clause in a query affects processing. For
example, this query selects all the books whose author’s first name is
Mary:

select xml.Xql.query("/bookstore/book[author/first-name ='Mary']”,
XmlFile

<xql:result ><book style="textbook">
<title>History of Trenton</title>
<author>
<first-name>Mary</first-name>
<last-name>Bob</last-name>
<publication>
Selected Short Stories of
<first-name>Mary</first-name>
<last-name>Bob</last-name>
</publication>
</author>
<price>55</price>

</book></xql:result>

Note that, query() is invoked twice, once in the where clause and
once in the select clause, which means the query executes twice and
may be slow for large documents.

As an alternative, save the result set in an object while executing the
query in the where clause and then restore the result in the select . For
example:

5-116 XML in the Database

Querying XML documents Adaptive Server version 12.5 Beta

declare @result HoldString
select @result = new HoldString()
select @result>>get()
from XMLDAT
where

@result>>put(xml.Xql.query("/bookstore/book
[author/first-name='Mary'],xmlcol)) !=

convert(xml.Xql, null)>>EmptyResult

Sybase advises that you not store the result set in the where clause.
The query does not always execute the where clause, so trying to
retrieve its result in the select clause may generate an erroneous result
set. Note that HoldString is an example class.

Because Adaptive Server stores each document in a column of a
given row, when the query scans a set of rows in the where clause,
more than one row may satisfy the search criteria. If this occurs, the
query returns a separate XML result document for each qualified
row. For example, if you create the following table:

create table XMLTAB (xmlcol image)
insert XMLTAB values

(XmlDoc.parse(<xml><A><C>c</C></xml>));
insert XMLTAB values

(XmlDoc.parse(<xml><D><E><C>c</C></E></D></xml>));

And then execute the following query:

select xml.Xql.query("//C", xmlcol)
from XMLTAB
where
@xml>>query("//C",xmlcol) != convert(xml.Xql,
null)>>EmptyResult

You would expect to get the following result set:

<xql_result>
<C>c</C>
<C>c</C>
</xql_result>

Instead, you get the following result set because the same row is
returned twice, once from the select clause and once from the where
clause:

Using XQL to develop applications

You can use XQL to develop standalone applications, JDBC clients,
JavaBeans, and EJBs to process XML data. The query() and parse()

methods enable you to query and parse XML documents. Because

New Features for Adaptive Server Version 12.5 5-117

Adaptive Server version 12.5 Beta Querying XML documents

you can write these applications as standalone applications, you do
not have to depend on Adaptive Server to supply the result set.
Instead you can query XML documents stored as operating system
files or stored out on the Web.

Example standalone application

The following example uses the FileInputStream() query to read the
bookstore.xml file, and the URL() method to read a Web page named
bookstore.xml which contains information about all the books in the
bookstore:

String result;
FileInputStream XmlFile = new FileInputStream("bookstore.xml");
if ((result =

Xql.query("/bookstore/book/author/first-name",
XmlFile))

!= Xql.EmptyResult)
{

System.out.println(result);
}else{

System.out.println("Query returned false\n");
}

URL _url = new URL("http://mybookstore/bookstore.xml");
if ((result =

Xql.query("/bookstore/book/author/first-name",
url.openStream))

!= Xql.EmptyResult)
{

System.out.println(result);
}else{

System.out.println("Query returned false\n");

}

Example JDBC client

The following example uses the Xql.query() method to query the xmlcol
column in the XMLTEXT text file:

5-118 XML in the Database

Querying XML documents Adaptive Server version 12.5 Beta

String selectQuery = "select xmlcol from XMLTEXT";
Statement stmt = _con.createStatement();
ResultSet rs = (SybResultSet)stmt.executeQuery(selectQuery);
String result;

InputStream is = null;
while ((rs != null) && (rs.next()))
{

is = rs.getAsciiStream(1);
result = Xql.query("/bookstore/book/author", is);
...

}

The following example assumes that the parsed XML data is stored
in an image column of the XMLDOC table. Although this application
fetches an image column as a binary stream, it does not parse this
during the query because it identifies the content of this binary
stream as a parsed XML document. Instead, the application creates a
SybMemXmlStream method from it and then executes the query. All this
is done using the Xql.query() method, and does not require any input
from the user:

String selectQuery = "select xmlcol from XMLDOC";
Statement stmt = _con.createStatement();
ResultSet rs = (SybResultSet)stmt.executeQuery(selectQuery);
InputStream is = null;
String result
while ((rs != null) && (rs.next()))
{

is = rs.getBinaryStream(1);
result = Xql.query("/bookstore/book/author/first-

name", is));
...

}

Example EJB component

You can write EJB components that serve as query engines on an EJB
server.

The component below includes an EJB called XmlBean. XmlBean
includes the query() method, which allows you to query any XML
document on the Web. In this component, query() first creates an
XmlDoc object, then queries the document.

The remote interface looks like:

New Features for Adaptive Server Version 12.5 5-119

Adaptive Server version 12.5 Beta Querying XML documents

public interface XmlBean extends javax.ejb.EJBObject
{

/**
* XQL Method
*/
public String XQL(String query, URL location) throws

java.rmi.RemoteException
;
}

The Bean implementation looks like:

public class XmlBean extends java.lang.Object implements
javax.ejb.SessionBean
{

....
/**
* XQL Method
*/

public String XQL(String query, java.net.URL
location) throws

java.rmi.RemoteException
{

try {
String result;

if((result =
Xql.query(query,

location.openStream())) !=
Xql.EmptyResult)

{
return (result);

}else{
return (null);

}
}catch(Exception e){

throw new
java.rmi.RemoteException(e.getMessage());

}
}

....
}

And the client code looks like:

5-120 XML in the Database

Querying XML documents Adaptive Server version 12.5 Beta

....
Context ctx = getInitialContext();
// make the instance of the class in Jaguar
XmlBeanHome _beanHome =
(XmlBeanHome)ctx.lookup("XmlBean");
_xmlBean = (XmlBean)_beanHome.create();
URL u = new URL("http://mywebsite/bookstore.xml");
String res=
xmlBean.XQL("/bookstore/book/author/first-name",u);

Accessing XML in SQL

This chapter discusses three applications of XML in SQL:

• Transact-SQL statements such as insert , select , and update for
referencing SQL columns and variables that contain XML
documents. These SQL operations use Java classes and methods
to manipulate the XML documents.

• Java classes to contain XML documents and to access and update
the elements of those documents. The examples include an
application-specific class for the Order document type, and a
general class for arbitrary SQL result sets.

• An XML parser, which is used by the Java classes to analyze and
manipulate XML documents.

The Java classes that are used to demonstrate XML applications are
XQL, JXml , OrderXml , and ResultSetXml .

• XQL allows you to query any XML document. XQL also includes a
query () method that enables you to query any subclass objects of
JXml . For more information, see “Using XQL” on page 112 and
“XML methods” on page 163.

• JXml stores and parses XML. It does not validate XML documents.
It is designed as a base class for subclasses that:

- Validate specific XML document types

- Provide application-oriented methods

OrderXml and ResultSetXml are two such subclasses.

• The OrderXml class is used to illustrate support for an application-
specific XML document type. OrderXml validates Order documents
for the Order DTD. You can use OrderXml methods to reference and
update elements of the Order document.

• ResultSetXml represents SQL result sets. The ResultSetXml

constructor validates the ResultSet document for the ResultSet DTD.

New Features for Adaptive Server Version 12.5 5-121

Adaptive Server version 12.5 Beta Querying XML documents

ResultSetXml methods are used to reference and update elements of
the ResultSet document.

The ResultSetXml class illustrates support for a general XML document
type capable of representing arbitrary SQL data.

“The OrderXml class for order documents” on page 124 and “The
ResultSetXml class for result set documents” on page 144 describe
these classes and their methods and parameters. For Javadoc HTML
pages with detailed specifications for the classes and for source code,
refer to $SYBASE/$SYBASE_ASE/sample/JavaSql (UNIX) or
%SYBASE%\Ase-12_0\sample\JavaSql (Windows NT).

Inserting XML documents

Use the parse() method to insert an XML document, which takes the
XML document as the argument and returns
sybase.aseutils.SybXmlStream . Adaptive Server provides implicit
mapping between image and sybase.aseutils.SybXmlStream . The
following is an insert statement:

insert XMLDAT
values (..,xml.Xql.parse("<xmldoc></xmldoc>",..))

Adaptive Server has an implicit mapping between image or text data
and InputStream . You can pass image or text columns to parse() without
doing any casting. The parse() UDF parses the document and returns
sybase.ase.SybXmlStream , which Adaptive Server uses to write the data
to the image column.

Updating XML documents

To update a document, first delete the original data and then insert
the new data. In a document-oriented application, the number of
updates to a document or portion of a document are very infrequent
compared to the number of reads. An update is similar to:

update XMLDAT
set xmldoc = xml.Xql.parse("<xmldoc></xmldoc>")

Deleting XML documents

Deleting an XML document is similar to deleting any text column.
For example, to delete a table named XMLDAT:

5-122 XML in the Database

Storing XML documents Adaptive Server version 12.5 Beta

Delete XMLDAT

Storing XML documents

To use XML documents for data interchange in Adaptive Server, you
must be able to store XML documents or the data that they contain in
the database. To determine how best to accomplish this, consider the
following:

• Mapping and storage: What sort of correspondence between XML
documents and SQL data is most suitable for your system?

• Client or server considerations: Should the mapping take place on
the client or the server?

• Accessing XML in SQL: How do you want to access the elements
of an XML document in SQL?

The rest of this section discusses each of these considerations; the
remainder of the chapter discusses the classes and methods you can
use with XML, including:

• A simple example to illustrate the basics of data storage and
exchange of XML documents

• A generalized example that you can customize for your own
XML documents

Client or server considerations

You can execute Java methods either on a client or on a server, which
is a consideration for element storage and hybrid storage. Document
storage involves little or no processing of the document.

• Element storage – if you map individual elements of an XML
document to SQL data, in most cases, the XML document is larger
than the SQL data. It is generally more efficient to assemble and
disassemble the XML document on the client and transfer only
the SQL data between the client and the server.

• Hybrid storage – if you store both the complete XML document
and extracted elements, then it is generally more efficient to
extract the data from the server, rather than transfer it from the
client.

New Features for Adaptive Server Version 12.5 5-123

Adaptive Server version 12.5 Beta Storing XML documents

Mapping and storage

There are three basic ways to store XML data in Adaptive Server:
element storage, document storage, or hybrid storage, which is a
mixture of both.

• Element storage – In this method, you extract data elements from
an XML document and store them as data rows and columns in
Adaptive Server.

For example, using the XML Order document, you can create
SQL tables with columns for the individual elements of an order:
Date, CustomerId, CustomerName, ItemId, ItemName, Quantity, and
Units. You can then manage that data in SQL with normal SQL
operations:

- To produce an XML document for Order data contained in
SQL, retrieve the data, and assemble an XML document with it.

- To store an XML document with new Order data, extract the
elements of that document, and update the SQL tables with
that data.

• Document storage – In this method, you store an entire XML
document in a single SQL column.

For example, using the Order document, you can create one or
more SQL tables having a column for Order documents. The
data type of that column could be:

- SQL text, or

- A generic Java class designed for XML documents, or

- A Java class designed specifically for XML Order documents

• Hybrid storage – this method, you store an XML document in an
SQL column, and also extract some of its data elements into
separate columns for faster and more convenient access.

Again, using the Order example, you can create SQL tables as you
would for document storage, and then include (or later add) one or
more columns to store elements extracted from the Order
documents.

Advantages and disadvantages of Storage Options

Each storage option has advantages and disadvantages. You must
choose the option or options best for your operation.

5-124 XML in the Database

A simple example for a specific result set Adaptive Server version 12.5 Beta

• If you use element storage, all of the data from the XML
document is available as normal SQL data that you can query and
update using SQL operations. However, element storage has the
overhead of assembling and disassembling the XML documents
for interchange.

• Document storage eliminates the need for assembling and
disassembling the data for interchange. However, you need to
use Java methods to reference or update the elements of the XML
documents while they are in SQL, which is slower and less
convenient than the direct SQL access of element storage.

• Hybrid storage balances the advantages of element storage and
document storage, but has the cost and complexity of redundant
storage of the extracted data.

A simple example for a specific result set

This section provides a simple example that demonstrates how you
can store XML documents or the data that they contain in an
Adaptive Server database.

The example in this section, the XML Order document type, is
designed for a specific purchase-order application, and the Java
methods created for it assume a specific set of SQL tables for storing
purchase order data.

For a more generalized example, applicable to a range of SQL result
sets, see “A customizable example for different result sets” on page
139.

The OrderXml class for order documents

The example in this section uses the OrderXml class and its methods for
basic operations on XML Order documents. The source code and
Javadoc specifications for OrderXml are in
$SYBASE/$SYBASE_ASE/sample/JavaSql.

OrderXml is a subclass of the JXml class, which is specialized for XML
Order documents. The OrderXml constructor validates the document
for the Order DTD. Methods of the OrderXml class support referencing
and updating the elements of the Order document.

• Constructor: OrderXml(String)

Validates that the String argument contains a valid XML Order
document, and then constructs an OrderXml object containing that

New Features for Adaptive Server Version 12.5 5-125

Adaptive Server version 12.5 Beta A simple example for a specific result set

document. For example, “doc” is a Java string variable containing an
XML Order document, perhaps one read from a file:

xml.order.OrderXml ox = new
xml.order.OrderXml(doc);

• Constructor: OrderXml(date, customerId, dtdOption, server)

The parameters are all String.

This method assumes a set of SQL tables containing Order data.
The method uses JDBC to execute a SQL query that retrieves
Order data for the given date and customerId. The method then
assembles an XML Order document with the data.

The server parameter identifies the Adaptive Server on which to
execute the query.

- If you invoke the method in a client environment, specify the
server name.

- If you invoke the method in Adaptive Server (in a SQL
statement or in isql), specify either an empty string or the string
“jdbc:default:connection,” which indicates that the query
should be executed on the current Adaptive Server.

The dtdOption parameter indicates whether you want the
generated Order to contain the DTD or to reference it externally.

For example:

xml.order.OrderXml ox = new OrderXml(“990704”, “123”,
“external”, “antibes:4000?user=sa”);

• void order2Sql(String ordersTableName, String
server)

Extracts the elements of the Order document and stores them in
a SQL table created by the createOrdertable() method.
ordersTableName is the name of the target table. The server
parameter is as described for the OrderXml constructor. For
example, if ox is a Java variable of type OrderXml :

ox.order2Sql(“current_orders”,
“antibes:4000?user=sa”);

This call extracts the elements of the Order document contained
in ox, and uses JDBC to insert the extracted elements into rows
and columns of the table named current_orders.

• static void createOrderTable(String
ordersTableName, String server)

5-126 XML in the Database

A simple example for a specific result set Adaptive Server version 12.5 Beta

Creates a SQL table with columns suitable for storing Order
data: customer_id, order_date, item_id, quantity, and unit.
ordersTableName is the name of the new table. The server
parameter is as described for the OrderXml constructor. For
example:

xml.order.OrderXml.createOrderTable
(“current_orders”,

“antibes:4000?user=sa”);

• String getOrderElement(String elementName)

elementName is “Date,” “CustomerId,” or “CustomerName.” The
method returns the text of the element. For example, if ox is a
Java variable of type OrderXml :

String customerId =
ox.getOrderElement(“CustomerId”);
String customerName =
ox.getOrderElement(“CustomerName”);
String date = ox.getOrderElement(“Date”);

• void setOrderElement(String elementName, String
newValue)

elementName is as described for getOrderElement() .The method sets
that element to newValue . For example, if ox is a Java variable of
type OrderXml :

ox.setOrderElement(“CustomerName”, “Acme Alpha
Consolidated”);
ox.setOrderElement(“CustomerId”, “987a”);
ox.setOrderElement(“Date”, “1999/07/05”);

• String getItemElement(int itemNumber, String elementName)

itemNumber is the index of an item in the order. elementName is
“ItemId,” “ItemName,” or “Quantity.” The method returns the
text of the item. For example, if ox is a Java variable of type
OrderXml :

String itemId = ox.getItemElement(2, “ItemId”);
String itemName = ox.getItemElement(2, “ItemName”);
String quantity = ox.getItemElement(2, “Quantity”);

• void setItemElement(int itemNumber, String
elementName, String newValue)

itemNumber and elementName are as described for the
getItemElement method. setItemElement sets the element to newValue.
For example, if ox is a Java variable of type OrderXml :

New Features for Adaptive Server Version 12.5 5-127

Adaptive Server version 12.5 Beta A simple example for a specific result set

ox.setItemElement(2, “ItemId”, “44”);
ox.setItemElement(2, “ItemName”, “cord”);
ox.setItemElement(2, “Quantity”, “3”);

• String getItemAttribute(int itemNumber, elementName,
attributeName)

itemNumber and elementName are described as for getItemElement() .
elementName and attributeName are both String. attributeName
must be “unit.” The method returns the text of the unit attribute
of the item.

➤ Note
Since the Order documents currently have only one attribute, the

attributeName parameter is unnecessary. It is included to illustrate the

general case, for example, if ox is a Java variable of type OrderXml .

String itemId = ox.getItemAttribute(2, “unit”);

• void setItemAttribute (int itemNumber, elementName,
attributeName, newValue)

itemNumber, elementName, and attributeName are as described for
getItemAttribute() . elementName, attributeName, and newValue are
String. The method sets the text of the unit attribute of the item
to newValue. For example, if ox is a Java variable of type OrderXml :

ox.setItemAttribute(2, “unit”, “13”);

• void appendItem(newItemId, newItemName, newQuantity,
newUnit)

The parameters are all String. The method appends a new item
to the document, with the given element values. For example, if
ox is a Java variable of type OrderXml :

ox.appendItem(“77”, “spacer”, “5”, “12”);

• void deleteItem(int itemNumber)

itemNumber is the index of an item in the order. The method
deletes that item. For example, if ox is a Java variable of type
OrderXml :

ox.deleteItem(2);

5-128 XML in the Database

A simple example for a specific result set Adaptive Server version 12.5 Beta

Creating and populating SQL tables for order data

In this section we create several tables that are designed to contain
data from XML Order documents, so that we can demonstrate
techniques for element, document, and hybrid data storage.

Tables for element storage

The following SQL statements create SQL tables customers, orders,
and items, whose columns correspond with the elements of the XML
Order documents.

create table customers
(customer_id varchar(5) not null unique,
customer_name varchar(50) not null)

create table orders
(customer_id varchar(5) not null,
order_date datetime not null,
item_id varchar(5) not null,
quantity int not null,
unit smallint default 1)

create table items
(item_id varchar(5) unique,
item_name varchar(20))

These tables need not have been specifically created to accommodate
XML Order documents.

The following SQL statements populate the tables with the data in
the example XML Order document (see “A sample XML document”
on page 99):

insert into customers values("123", "Acme Alpha")

insert into orders values ("123", "1999/05/07",
"987", 5, 1)

insert into orders values ("123", "1999/05/07",
"654", 3, 12)

insert into orders values ("123", "1999/05/07",
"579", 1, 1)

insert into items values ("987", "Widget")

insert into items values ("654",
"Medium connecter")

insert into items values ("579",
"Type 3 clasp")

New Features for Adaptive Server Version 12.5 5-129

Adaptive Server version 12.5 Beta A simple example for a specific result set

Use select to retrieve the Order data from the tables:

select order_date as Date, c.customer_id as
CustomerId,

customer_name as CustomerName,
o.item_id as ItemId, i.item_name as ItemName,
quantity as Quantity, o.unit as unit

 from customers c, orders o, items i
where c.customer_id=o.customer_id and

o.item_id=i.item_id

Tables for document and hybrid storage

The following SQL statement creates a SQL table for storing
complete XML Order documents, either with or without extracted
elements (for hybrid storage).

create table order_docs
(id char(10) unique,
customer_id varchar(5) null, -- For an

extracted “CustomerId” element
order_doc xml.order.OrderXml)

Using the element storage technique

This section describes the element storage technique for bridging
XML and SQL.

• “Composing order documents from SQL data” on page 129
discusses the composition of an XML Order document from SQL
data.

• “Decomposing data from an XML order into SQL” on page 131
discusses the decomposition of an XML Order document to SQL
data.

Composing order documents from SQL data

In this example, Java methods generate an XML Order document
from the SQL data in the tables created in “Creating and populating
SQL tables for order data” on page 128.

Date CustomerId CustomerName ItemId ItemName Quantity Unit

July 4 1999 123 Acme Alpha 987 Coupler 5 1

July 4 1999 123 Acme Alpha 654 Connector 3 12

July 4 1999 123 Acme Alpha 579 Clasp 1 1

5-130 XML in the Database

A simple example for a specific result set Adaptive Server version 12.5 Beta

A constructor method of the OrderXml class maps the data. An call of
that constructor might be:

new xml.order.OrderXml("990704", "123",
“external”, "antibes:4000?user=sa");

This constructor method uses internal JDBC operations to:

• Execute a SQL query for the Order data

• Generate an XML Order document with the data

• Return the OrderXml object that contains the Order document

You can invoke the OrderXml constructor in the client or the Adaptive
Server.

• If you invoke the OrderXml constructor in the client, the JDBC
operations that it performs use jConnect to connect to the
Adaptive Server and perform the SQL query. It then reads the
result set of that query and generates the Order document on the
client.

• If you invoke the OrderXml constructor in Adaptive Server, the
JDBC operations that it performs use the native JDBC driver to
connect to the current Adaptive Server and perform the SQL
query. It then reads the result set and generates the Order
document in Adaptive Server.

Generating an order on the client

Designed to be implemented on the client, main() invokes the
constructor of the OrderXml class to generate an XML Order from the
SQL data. That constructor executes a select for the given date and
customer ID, and assembles an XML Order document from the
result.

New Features for Adaptive Server Version 12.5 5-131

Adaptive Server version 12.5 Beta A simple example for a specific result set

import java.io.*;
import util.*;
public class Sql2OrderClient {

public static void main (String args[]) {
try{

xml.order.Order order =
new xml.order.OrderXml("990704",

"123",
“external”,

"antibes:4000?user=sa");
FileUtil.string2File("Order-

sql2Order.xml",
order.getXmlText());

} catch (Exception e) {
System.out.println("Exception:");
e.printStackTrace();
}

}
 }

Generating an order on the server

Designed for the server environment, the following SQL script
invokes the constructor of the OrderXml class to generate an XML
Order from the SQL data:

declare @order xml.order.OrderXml
select @order =

new xml.order.OrderXml('990704', '123',
'external', '')

insert into order_docs (id, order_doc) values(“3”,
@order)

Decomposing data from an XML order into SQL

In this section, you extract elements from an XML Order document
and store them in the rows and columns of the Orders tables. The
examples illustrate this procedure in both server and client
environments.

You decompose the elements using the Java method order2Sql() of the
OrderXml class. Assume that xmlOrder is a Java variable of type
OrderXml :

xmlOrder.order2Sql(“orders_received”,
“antibes:4000?user=sa”);

5-132 XML in the Database

A simple example for a specific result set Adaptive Server version 12.5 Beta

The order2Sql() call extracts the elements of the XML Order document
contained in variable xmlOrder, and then uses JDBC operations to
insert that data into the orders_received table. You can call this method
on the client or on Adaptive Server:

• Invoked from the client, order2Sql() extracts the elements of the
XML Order document in the client, uses jConnect to connect to
the Adaptive Server, and then uses the Transact-SQL insert

command to place the extracted data into the table.

• Invoked from the server, order2Sql() extracts the elements of the
XML Order document in the Adaptive Server, uses the native
JDBC driver to connect to the current Adaptive Server, and then
use the Transact-SQL insert command to place the extracted data
into the table.

Decomposing the XML document on the client

Invoked from the client, the main() method of the Order2SqlClient class
creates a table named orders_received with columns suitable for Order
data. It then extracts the elements of the XML Order contained in the
file Order.xml into rows and columns of orders_received. It performs
these actions with calls to the static method OrderXml.createOrderTable()

and the instance method order2Sql() .

import util.*;
import xml.order.*;
import java.io.*;
import java.sql.*;
import java.util.*;

public class Order2SqlClient {
public static void main (String args[]) {

try{
String xmlOrder =

FileUtil.file2String("order.xml");
OrderXml.createOrderTable("orders_received",

"antibes:4000?user=sa");
xmlOrder.order2Sql("orders_received",

"antibes:4000?user=sa");
} catch (Exception e) {
System.out.println("Exception:");
e.printStackTrace();
}

}
 }

New Features for Adaptive Server Version 12.5 5-133

Adaptive Server version 12.5 Beta A simple example for a specific result set

Decomposing the XML document on the server

Invoked from the server, the following SQL script invokes the
OrderXml constructor to generate an XML Order document from the
SQL tables, and then invokes the method OX.sql2Order() , which
extracts the Order data from the generated XML and inserts it into
the orders_received table.

declare @xmlorder OrderXml
select @xmlorder = new OrderXml('19990704', '123',

'external', '')
select @xmlorder>>order2Sql('orders_received', '')

Using the document storage technique

When using the document storage technique, you store a complete
XML document in a single SQL column.This approach avoids the
cost of mapping the data between SQL and XML when documents
are stored and retrieved, but access to the stored elements can be
slow and inconvenient.

Storing XML order documents in SQL columns

This section provides examples of document storage from the client
and from the server.

Inserting an order document from a client file

The following command-line call is representative of how you can
insert XML data into Adaptive Server from a client file. It copies the
contents of the Order.xml file (using the –I parameter) to the Adaptive
Server and executes the SQL script (using the –Q parameter) using
the contents of Order.xml as the value of the question-mark (?)
parameter.

java util.FileUtil -A putstring -I "Order.xml" \
 -Q "insert into order_docs (id, order_doc) \

values (‘1’, new xml.order.OrderXml(?)) " \
 –S "antibes:4000?user=sa"

➤ Note
The constructor invocation new xml.order.OrderXml(?) validates the XML Order

document.

5-134 XML in the Database

A simple example for a specific result set Adaptive Server version 12.5 Beta

Inserting a generated order document on the server

Executed on the server, the following SQL command generates an
XML Order document from SQL data, and immediately inserts the
generated XML document into the column of the order_docs table.

insert into order_docs (ID, order_doc)
select “2”, new xml.order.OrderXml("990704","123",
"external", "")

Accessing the elements of stored XML order documents

We have created a table named order_docs with a column named
order_doc. The datatype of the order_doc column is OrderXml , which is a
Java class that contains an XML Order document.

The OrderXml class contains several instance methods that let you
reference and update elements of the XML Order document. They
are described in “The OrderXml class for order documents” on page
124. This section uses these methods to update the Order document.

<?xml version="1.0"?>
 <!DOCTYPE Order SYSTEM "Order.dtd">
 <Order>

<Date>1999/07/04</Date>
<CustomerId>123</CustomerId>
<CustomerName>Acme Alpha</CustomerName>

<Item>
<ItemId> 987</ItemId>
<ItemName>Coupler</ItemName>
<Quantity>5</Quantity>

</Item>

<Item>
<ItemId>654</ItemId>
<ItemName>Connecter</ItemName>
<Quantity unit="12">3</Quantity>

</Item>

<Item>
<ItemId>579</ItemId>
<ItemName>Clasp</ItemName>
<Quantity>1</Quantity>

</Item>
 </Order>

Each XML Order document has exactly one Date, CustomerId, and
CustomerName, and zero or more Items, each of which has an ItemId,
ItemName, and Quantity.

New Features for Adaptive Server Version 12.5 5-135

Adaptive Server version 12.5 Beta A simple example for a specific result set

Client access to order elements

The main() method of the OrderElements class is executed on the client.
It reads the Order.xml file into a local variable, and constructs an
OrderXml document from it. The method then extracts the “header”
elements (Date, CustomerId, andCustomerName) and the elements of
the first Item of the Order, prints those elements, and finally updates
those elements of the Order with new values.

import java.io.*;
import util.*;
public class OrderElements {

public static void main (String[] args) {
try{

String xml = FileUtil.file2String("Order.xml");
xml.order.OrderXml ox =

new xml.order.OrderXml(xml);

// Get the header elements
String cname = ox.getOrderElement("CustomerName");
String cid = ox.getOrderElement("CustomerId");
String date = ox.getOrderElement("Date");

// Get the elements for item 1 (numbering from 0)
String iName1 = ox.getItemElement(1, "ItemName");
String iId1 = ox.getItemElement(1, "ItemId");
String iQ1 = ox.getItemElement(1, "Quantity");
String iU = ox.getItemAttribute(1, "Quantity",

"unit");
System.out.println("\nBEFORE UPDATE: ")
System.out.println("\n "+date+ " "+ cname + " " +

cid);
System.out.println("\n "+ iName1+" "+iId1+" "

+ iQ1 + " " + iU + "\n");

// Set the header elements
ox.setOrderElement("CustomerName", "Best Bakery"
ox.setOrderElement("CustomerId", "531");
ox.setOrderElement("Date", "1999/07/31");

// Set the elements for item 1 (numbering from 0)
ox.setItemElement(1, "ItemName", "Flange");
ox.setItemElement(1, "ItemId", "777");
ox.setItemElement(1, "Quantity","3");
ox.setItemAttribute(1, "Quantity", "unit", "13");

//Get the updated header elements
cname = ox.getOrderElement("CustomerName");
cid = ox.getOrderElement("CustomerId");
date = ox.getOrderElement("Date");

5-136 XML in the Database

A simple example for a specific result set Adaptive Server version 12.5 Beta

// Get the updated elements for item 1
(numbering from 0)

iName1 = ox.getItemElement(1, "ItemName");
iId1 = ox.getItemElement(1, "ItemId");
iQ1 = ox.getItemElement(1, "Quantity");
iU = ox.getItemAttribute(1, "Quantity", "unit");

System.out.println("\nAFTER UPDATE: ");
System.out.println("\n "+date+ " "+ cname + " " +

cid);
System.out.println("\n "+ iName1+" "+iId1+" "

+ iQ1 + " " + iU + "\n");

//Copy the updated document to another file
FileUtil.string2File("Order-updated.xml",

ox.getXmlText())

} catch (Exception e) {
System.out.println("Exception:");
e.printStackTrace();
}

}
 }

After implementing the methods in OrderElements , the Order
document stored in Order-updated.xml is:

<?xml version="1.0"?>
 <!DOCTYPE Order SYSTEM 'Order.dtd'>
 <Order>

<Date>1999/07/31</Date>
<CustomerId>531</CustomerId>
<CustomerName>Best Bakery</CustomerName>
<Item>

<ItemId> 987</ItemId>
<ItemName>Coupler</ItemName>
<Quantity>5</Quantity>

</Item>
<Item>

<ItemId>777</ItemId>
<ItemName>Flange</ItemName>
<Quantity unit="13">3</Quantity>

</Item>
<Item>

<ItemId>579</ItemId
<ItemName>Clasp</ItemName
<Quantity>1</Quantity>

 </Item>
 </Order>

New Features for Adaptive Server Version 12.5 5-137

Adaptive Server version 12.5 Beta A simple example for a specific result set

Server access to order elements

The preceding example showed uses of get and set methods in a
client environment. You can also call those methods in SQL
statements in the server:

select order_doc>>getOrderElement("CustomerId"),
order_doc>>getOrderElement("CustomerName"),
order_doc>>getOrderElement("Date")

 from order_docs

select order_doc>>getItemElement(1, "ItemId"),
order_doc>>getItemElement(1, "ItemName"),
order_doc>>getItemElement(1, "Quantity"),
order_doc>>getItemAttribute(1, "Quantity", "unit")

 from order_docs

update order_docs
 set order_doc = order_doc>>setItemElement(1, "ItemName",

"Wrench")

update order_docs
 set order_doc = order_doc>>setItemElement(2, "ItemId", "967")

select order_doc>>getItemElement(1, "ItemName"),
order_doc>>getItemElement(2, "ItemId")

 from order_docs

update order_docs
 set order_doc = order_doc>>setItemAttribute(2, "Quantity",

"unit", "6")

select order_doc>>getItemAttribute(2, "Quantity", "unit")
 from order_docs

Appending and deleting items in the XML document

The Order class provides methods for adding and removing items
from the Order document.

You can append a new item to the Order document with the
appendItem() method, whose parameters specify ItemId, ItemName,
Quantity, and units for the new item:

update order_docs
 set order_doc = order_doc>>appendItem("864",

"Bracket", "3","12")

appendItem() is a void method that modifies the instance. When you
invoke such a method in an update statement, you reference it as
shown, as if it were an Order-valued method that returns the
updated item.

5-138 XML in the Database

A simple example for a specific result set Adaptive Server version 12.5 Beta

Delete an existing item from the Order document using deleteItem() .
The deleteItem() parameter specifies the number of the item to be
deleted. The numbering begins with zero, so the following command
deletes the second item from the specified row.

update order_docs
set order_doc = order_doc>>deleteItem(1)

 where id = “1”

Using the hybrid storage technique

In the hybrid storage technique, you store the complete XML
document in a SQL column and, at the same time, store elements of
that document in separate columns. This technique often balances
the advantages and disadvantages of element and document
storage.

“Using the document storage technique” on page 133 demonstrates
how to store the entire XML Order document in the single column
order_docs.order_doc. Using document storage, you must reference
and access the CustomerId element in this way:

select order_doc>>getOrderElement(“CustomerID”) from order_docs
where order_doc>>getOrderElement(“CustomerID”) > “222”

To access CustomerId more quickly and conveniently than with the
method call, but without first decomposing the Order into SQL rows
and columns:

1. Add a column to the order_docs table for the customer_id:

alter table order_docs
add customer_id varchar(5) null

2. Update that new column with extracted customerId values.

update order_docs
 set customer_id =

order_doc>>getOrderElement("CustomerId")

3. Now, you can reference CustomerId values directly:

select customer_id from order_docs where
customer_id > “222”

You can also define an index on the column.

New Features for Adaptive Server Version 12.5 5-139

Adaptive Server version 12.5 Beta A customizable example for different result sets

➤ Note
This technique does not synchronize the extracted customer_id column

with the CustomerId element of the order_doc column if you update either

value.

A customizable example for different result sets

This section demonstrates how you can store XML documents or the
data that they contain in an Adaptive Server database using the
ResultSet class and its methods for handling result sets. You can
customize the ResultSet class for your database application.

Contrast the ResultSet document type and the Order document type:

• The Order document type is a simplified example designed for a
specific purchase-order application, and its Java methods are
designed for a specific set of SQL tables for purchase order data.
See “A simple example for a specific result set” on page 124.

• The ResultSet document type is designed to accommodate many
kinds of SQL result sets, and the Java methods designed for it
include parameters to accommodate different kinds of SQL
queries.

For this example, you create and work with XML ResultSet documents
that contain the same data as the XML Order documents.

First, create the orders table and its data:

create table orders
(customer_id varchar(5) not null,
order_date datetime not null,
item_id varchar(5) not null,
quantity int not null,
unit smallint default 1)

insert into orders values ("123", "1999/05/07", "987", 5, 1)
insert into orders values ("123", "1999/05/07", "654", 3, 12)
insert into orders values ("123", "1999/05/07", "579", 1, 1)

Also, create the following SQL table to store complete XML ResultSet

documents:

create table resultset_docs
(id char(5),
rs_doc xml.resultsets.ResultSetXml)

5-140 XML in the Database

A customizable example for different result sets Adaptive Server version 12.5 Beta

The ResultSet Document Type

ResultSet documents consist of ResultSetMetaData followed by
ResultSetData as shown in the following general form:

<?xml version="1.0"?>
 <!DOCTYPE ResultSet SYSTEM 'ResultSet.dtd'>
 <ResultSet>

<ResultSetMetaData>
…
</ResultSetMetaData>

<ResultSetData>
…
</ResultSetData>

</ResultSet>

The ResultSetMetaData portion of an XML ResultSet consists of the SQL
metadata returned by the methods of the JDBC ResultSet class. The
ResultSetMetaData for the example result set is:

<ResultSetMetaData
getColumnCount="7">

 <ColumnMetaData
 getColumnDisplaySize="25"
 getColumnLabel="Date"
 getColumnName="Date"
 getColumnType="93"
 getPrecision="0"
 getScale="0"
 isAutoIncrement="false"
 isCurrency="false"
 isDefinitelyWritable="false"
 isNullable="false"

 isSigned="false" />

<ColumnMetaData
 getColumnDisplaySize="5"
 getColumnLabel="CustomerId"
 getColumnName="CustomerId"
 getColumnType="12"
 getPrecision="0"
 getScale="0"
 isAutoIncrement="false"
 isCurrency="false"
 isDefinitelyWritable="false"
 isNullable="false"

 isSigned="false" />

New Features for Adaptive Server Version 12.5 5-141

Adaptive Server version 12.5 Beta A customizable example for different result sets

 <ColumnMetaData
 getColumnDisplaySize="50"
 getColumnLabel="CustomerName"
 getColumnName="CustomerName"
 getColumnType="12"
 getPrecision="0"
 getScale="0"
 isAutoIncrement="false"
 isCurrency="false"
 isDefinitelyWritable="false"
 isNullable="false"

 isSigned="false" />

<ColumnMetaData
 getColumnDisplaySize="5"
 getColumnLabel="ItemId"
 getColumnName="ItemId"
 getColumnType="12"
 getPrecision="0"
 getScale="0"
 isAutoIncrement="false"
 isCurrency="false"
 isDefinitelyWritable="false"
 isNullable="false"

 isSigned="false" />

 <ColumnMetaData
 getColumnDisplaySize="20"
 getColumnLabel="ItemName"
 getColumnName="ItemName"
 getColumnType="12"
 getPrecision="0"
 getScale="0"
 isAutoIncrement="false"
 isCurrency="false"
 isDefinitelyWritable="false"
 isNullable="false"

 isSigned="false" />

5-142 XML in the Database

A customizable example for different result sets Adaptive Server version 12.5 Beta

 <ColumnMetaData
 getColumnDisplaySize="11"
 getColumnLabel="Quantity"
 getColumnName="Quantity"
 getColumnType="4"
 getPrecision="0"
 getScale="0"
 isAutoIncrement="false"
 isCurrency="false"
 isDefinitelyWritable="false"
 isNullable="false"

 isSigned="true" />

 <ColumnMetaData
 getColumnDisplaySize="6"
 getColumnLabel="unit"
 getColumnName="unit"
 getColumnType="5"
 getPrecision="0"
 getScale="0"
 isAutoIncrement="false"
 isCurrency="false"
 isDefinitelyWritable="false"
 isNullable="false"

 isSigned="true" />

</ResultSetMetaData>

The names of the attributes of ColumnMetaData are simply the names of
the methods of the JDBC ResultSetMetaData class, and the values of
those attributes are the values returned by those methods.

The ResultSetData portion of an XML ResultSet document is a list of Row
elements, each having a list of Column elements. The text value of a
Column element is the value returned by the JDBC getString() method
for the column. The ResultSetData for the example is:

<ResultSetData>
 <Row>
 <Column name="Date">1999-07-04 00:00:00.0</Column>
 <Column name="CustomerId">123</Column>
 <Column name="CustomerName">Acme Alpha</Column>
 <Column name="ItemId">987</Column>
 <Column name="ItemName">Coupler</Column>
 <Column name="Quantity">5</Column>
 <Column name="unit">1</Column>
 </Row>
 <Row>
 <Column name="Date">1999-07-04 00:00:00.0</Column>
 <Column name="CustomerId">123</Column>

New Features for Adaptive Server Version 12.5 5-143

Adaptive Server version 12.5 Beta A customizable example for different result sets

 <Column name="CustomerName">Acme Alpha</Column>
 <Column name="ItemId">654</Column>
 <Column name="ItemName">Connecter</Column>
 <Column name="Quantity">3</Column>
 <Column name="unit">12</Column>
 </Row>
 <Row>
 <Column name="Date">1999-07-04 00:00:00.0</Column>
 <Column name="CustomerId">123</Column>
 <Column name="CustomerName">Acme Alpha</Column>
 <Column name="ItemId">579</Column>
 <Column name="ItemName">Clasp</Column>
 <Column name="Quantity">1</Column>
 <Column name="unit">1</Column>
 </Row>
 </ResultSetData>
 </ResultSet>

The XML DTD for the ResultSetXml document type

The DTD for the XML ResultSet document type is:

<!ELEMENT ResultSet (ResultSetMetaData ,
ResultSetData)>

 <!ELEMENT ResultSetMetaData (ColumnMetaData)+>
 <!ATTLIST ResultSetMetaData getColumnCount CDATA

#IMPLIED>
 <!ELEMENT ColumnMetaData EMPTY>
 <!ATTLIST ColumnMetaData
 getCatalogName CDATA #IMPLIED
 getColumnDisplaySize CDATA #IMPLIED
 getColumnLabel CDATA #IMPLIED
 getColumnName CDATA #IMPLIED
 getColumnType CDATA #REQUIRED
 getColumnTypeName CDATA #IMPLIED
 getPrecision CDATA #IMPLIED
 getScale CDATA #IMPLIED
 getSchemaName CDATA #IMPLIED
 getTablename CDATA #IMPLIED

5-144 XML in the Database

A customizable example for different result sets Adaptive Server version 12.5 Beta

 isAutoIncrement (true|false) #IMPLIED
 isCaseSensitive (true|false) #IMPLIED
 isCurrency (true|false) #IMPLIED
 isDefinitelyWritable (true|false) #IMPLIED
 isNullable (true|false) #IMPLIED
 isReadOnly (true|false) #IMPLIED
 isSearchable (true|false) #IMPLIED
 isSigned (true|false) #IMPLIED
 isWritable (true|false) #IMPLIED
 >

<!ELEMENT ResultSetData (Row)*>
<!ELEMENT Row (Column)+>
<!ELEMENT Column (#PCDATA)>
<!ATTLIST Column
 null (true | false) "false"
 name CDATA #IMPLIED

The ResultSetXml class for result set documents

This section describes the ResultSetXml class that supports the
ResultSet DTD.

The ResultSetXml class is similar to the OrderXml class. It is a subclass of
the JXml class, which validates a document with the XML ResultSet

DTD, and also provides methods for accessing and updating the
elements of the contained XML ResultSet document.

• Constructor: ResultSetXml(String)

Validates that the argument contains a valid XML ResultSet

document and constructs a ResultSetXml object containing that
document. For example, if doc is a Java String variable
containing an XML ResultSet document, read from a file:

xml.resultset.ResultSetXml rsx =
new xml.resultset.ResultSetXml(doc);

• Constructor: ResultSetXml(query, cdataColumns, colNames,
dtdOption, server)

The parameters are all String.

The query parameter is any SQL query that returns a result set.

The server parameter identifies the Adaptive Server on which to
execute the query.

- If you invoke the method in a client environment, specify the
server name.

New Features for Adaptive Server Version 12.5 5-145

Adaptive Server version 12.5 Beta A customizable example for different result sets

- If you invoke the method in a Adaptive Server (in a SQL
statement or isql), specify either an empty string or the string
“jdbc:default:connection,” indicating that the query should be
executed on the current Adaptive Server.

The method connects to the server, executes the query, retrieves
the SQL result set, and constructs a ResultSetXml object with that
result set.

The cdataColumns parameter indicates which columns should be
XML CDATA sections. The colNames parameter indicates
whether the resulting XML should specify “name” attributes in
the “Column” elements. The dtd Option indicates whether the
resulting XML should include the XML DTD for the ResultSet

document type in-line, or reference it externally.

For example:

xml.resultset.ResultSetXml rsx =
new xml.resultset.ResultSetXml
(“select 1 as ‘a’, 2 as ‘b’, 3 ”, “none”,

“yes”,
“external”, “antibes:4000?user=sa”);

This constructor call connects to the server specified in the last
argument, evaluates the SQL query given in the first argument,
and returns an XML ResultSet containing the data from the result
set of the query. This simple SQL query does not reference a
table. If the constructor is called in the Adaptive Server, then the
server parameter should be an empty string or
jdbc:default:connection, to indicate a connection to the current
server.

• String toSqlScript(resultTableName,
columnPrefix, writeOption, goOption)

The parameters are all String.

The method returns a SQL script with a create statement and a list
of insert statements that re-create the result set data.

The resultTableName parameter is the table name for the create

and insert statements. (SQL result sets do not specify a table name
because they could be derived from joins or unions.) The
columnPrefix parameter is the prefix to use in generated column
names, which are needed for unnamed columns in the result set.
The writeOption parameter indicates whether the script is to
include the create statement, the insert statements, or both. The
goOption parameter indicates whether the script is to include the

5-146 XML in the Database

A customizable example for different result sets Adaptive Server version 12.5 Beta

go commands, which are required in isql and not supported in
JDBC.

For example, if rsx is a Java variable of type ResultSetXml :

rsx>>toSqlScript(“systypes_copy”, “column_”, “both”, “yes”)

• String getColumn(int rowNumber, int
columnNumber)

rowNumber is the index of a row in the result set; columnNumber
is the index of a column of the result set. The method returns the
text of the specified column.

For example, if rsx is a Java variable of type ResultSetXml :

select rsx>>getColumn(3, 4)

• String getColumn(int rowNumber, String
columnName)

rowNumber is the index of a row in the result set; columnName is
the name of a column of the result set. The method returns the
text of the specified column.

For example, if rsx is a Java variable of type ResultSetXml :

select rsx>>getColumn(3, “name”)

• void setColumn(int rowNumber, int columnNumber,
newValue)

rowNumber and columnNumber are as described for getColumn() .
The method sets the text of the specified column to newValue.

For example, if rsx is a Java variable of type ResultSetXml :

select rsx = rsx>>setColumn(3, 4, “new value”)

• void setColumn(int rowNumber, String columnName,
newValue)

rowNumber and columnName are as described for getColumn() . The
method sets the text of the specified column to newValue.

For example, if rsx is a Java variable of type ResultSetXml :

select rsx = rsx>>setColumn(3, “name”, “new value”)

• Boolean allString(int columnNumber, String
compOp, String comparand)

columnNumber is the index of a column of the result set. compOp
is a SQL comparison operator (<, >, =, !=, <=, >=). comparand is a
comparison value. The method returns a value indicating

New Features for Adaptive Server Version 12.5 5-147

Adaptive Server version 12.5 Beta A customizable example for different result sets

whether the specified comparison is true for all rows of the result
set.

For example, if rsx is a Java variable of type ResultSetXml :
if rsx>>allString(3, “<”, “compare value”)…

This condition is true if in the result set represented by rsx, for all
rows, the value of column 3 is less than “compare value.” This is
a String comparison. Similar methods can be used for other data
types.

• Boolean someString(int columnNumber, String
compOp, String comparand)

columnNumber is the index of a column of the result set. compOp
is a SQL comparison operator (<, >, =, !=, <=, >=). comparand is a
comparison value. The method returns a value indicating
whether the specified comparison is true for some row of the
result set.

For example, if rsx is a Java variable of type ResultSetXml :

if rsx>>someString(3, “<”, “compare value”) …

This condition is true if in the result set represented by rsx, for
some row, the value of column 3 is less than “compare value.”

Using the element storage technique

This section uses the orders table to illustrate mapping between SQL
data and XML ResultSet documents.

• In “Composing a ResultSet XML document from the SQL data”
on page 147, we generate an XML ResultSet document from the
SQL data. We assume that we are the originator of the XML
ResultSet document. We use the resulting XML ResultSet document
to describe the ResultSet DTD.

• In “Decomposing the XML ResultSet to SQL data” on page 149,
we re-generate SQL data from the XML ResultSet document. We
assume we are the recipient of the XML ResultSet document.

Composing a ResultSet XML document from the SQL data

You can use Java methods to evaluate a given query and generate an
XML result set with the query’s data. This example uses a
constructor method of the ResultSetXml class. For example:

5-148 XML in the Database

A customizable example for different result sets Adaptive Server version 12.5 Beta

new xml.resultset.ResultSetXml
(“select 1 as ‘a’, 2 as ‘b’, 3 ”, “none”,
“yes”, “external”, “antibes:4000?user=sa”);

The method uses internal JDBC operations to execute the argument
query, and then constructs the XML ResultSet for the query’s data.

We can invoke this constructor in a client or in the Adaptive Server:

• If you invoke the constructor in a client, specify a server
parameter that identifies the Adaptive Server to be used when
evaluating the query. The query is evaluated in the Adaptive
Server, but the XML document is assembled in the client.

• If you invoke the constructor in the Adaptive Server, specify a
null value or jdbc:default:connection for the server. The query is
evaluated in the current server and the XML document is
assembled there.

Generating a ResultSet in the client

The main() method of the OrderResultSetClient class is invoked in a
client environment. main() invokes the constructor of the
ResultSetXml class to generate an XML ResultSet . The constructor
executes the query, retrieves its metadata and data using JDBC
ResultSet methods, and assembles an XML ResultSet document with
the data.

import java.io.*;
import util.*;
public class OrderResultSetClient {
 public static void main (String[] args) {
 try{

String orderQuery = "select order_date as Date,
c.customer_id as CustomerId, "

+ "customer_name as CustomerName, "
+ "o.item_id as ItemId, i.item_name as ItemName, "
+ "quantity as Quantity, o.unit as unit "
+ "from customers c, orders o, items i "
+ "where c.customer_id=o.customer_id and

o.item_id=i.item_id " ;

xml.resultset.ResultSetXml rsx
= new xml.resultset.ResultSetXml(orderQuery,
"none", "yes", "external",
"antibes:4000?user=sa");

 FileUtil.string2File("OrderResultSet.xml",
rsx.getXmlText());

New Features for Adaptive Server Version 12.5 5-149

Adaptive Server version 12.5 Beta A customizable example for different result sets

} catch (Exception e) {
 System.out.println("Exception:");
 e.printStackTrace();
 }
 }
 }

Generating a ResultSet in Adaptive Server

The following SQL script invokes the constructor of the ResultSetXml

class in a server environment:

declare @rsx xml.resultset.ResultSetXml
select @rsx = new xml.resultset.ResultSetXml

(“select 1 as ‘a’, 2 as ‘b’, 3 ”, “none”,
“yes”, “external”, “”);
insert into resultset_docs values (“1”, @rsx)

Decomposing the XML ResultSet to SQL data

In this section, you decompose an existing ResultSet document to SQL
data.

• In “Decomposing data from an XML order into SQL” on page
131, you invoke the order2Sql() method of the OrderXml class to
decompose an XML Order document into SQL data. order2Sql()

directly inserts the extracted data into a SQL table.

• In this example, the toSqlScript() method of the ResultSetXml class
decomposes an XML ResultSet document into SQL data. Instead of
directly inserting extracted data into a SQL table, however,
toSqlScript() returns a SQL script with generated insert statements.

The two approaches are equivalent.

Decomposing the XML ResultSet Document in the client

The main() method of ResultSetXml is executed in a client environment.
It copies the file OrderResultSet.xml, constructs a ResultSetXml object
containing the contents of that file, and invokes the toSqlScript()

method of that object to generate a SQL script that re-creates the data
of the result set. The method stores the SQL script in the file order-
resultset-copy.sql.

5-150 XML in the Database

A customizable example for different result sets Adaptive Server version 12.5 Beta

import java.io.*;
import util.*;
public class ResultSet2Sql{
 public static void main (String[] args) {
 try{
 String xml =
FileUtil.file2String("OrderResultSet.xml");

xml.resultset.ResultSetXml rsx
= new xml.resultset.ResultSetXml(xml);

 String sqlScript
= rsx.toSqlScript("orderresultset_copy", "col_",

"both", "no");
 FileUtil.string2File("order-resultset-copy.sql",

sqlScript);
util.ExecSql.statement(sqlScript,
“antibes:4000?user=sa”);

 } catch (Exception e) {
 System.out.println("Exception:");
 e.printStackTrace();
 }
 }
 }

This is the SQL script generated by ResultSet2Sql.

set quoted_identifier on
 create table orderresultset_copy (
 Date datetime not null ,
 CustomerId varchar (5) not null ,
 CustomerName varchar (50) not null ,
 ItemId varchar (5) not null ,
 ItemName varchar (20) not null ,
 Quantity integer not null ,
 unit smallint not null
)

insert into orderresultset_copy values (
 '1999-07-04 00:00:00.0', '123',

'Acme Alpha', '987', 'Widget', 5, 1)
 insert into orderresultset_copy values (
 '1999-07-04 00:00:00.0', '123',

'Acme Alpha', '654',
'Medium connecter', 3, 12)

 insert into orderresultset_copy values (
'1999-07-04 00:00:00.0', '123',
'Acme Alpha', '579', 'Type 3 clasp', 1, 1)

The SQL script includes the set quoted_identifier on command for those
cases where the generated SQL uses quoted identifiers.

New Features for Adaptive Server Version 12.5 5-151

Adaptive Server version 12.5 Beta A customizable example for different result sets

Decomposing the XML ResultSet Document in Adaptive Server

The following SQL script invokes the toSqlScript() method in Adaptive
Server and then creates and populates a table with a copy of the
result set data.

declare @rsx xml.resultset.ResultSetXml
select @rsx = rs_doc from resultset_docs where id=1
select @script =
@rsx>>toSqlScript(“resultset_copy”, “column_”,
“both”, “no”)
declare @I integer
select @I = util.ExecSql.statement(@script, “”)

Using the document storage technique

This section shows examples of storing XML ResultSet documents in
single SQL columns and techniques for referencing and updating the
column elements.

Storing an XML ResultSet document in a SQL column

The following SQL script generates an XML ResultSet document and
stores it in a table:

declare @query java.lang.StringBuffer
select @query = new java.lang.StringBuffer()
 -- The following “appends” build up a SQL select statement in

the @query variable
 -- We use a StringBuffer, and the append method, so that the

@query can be as long as needed.
select @query>>append("select order_date as Date,

c.customer_id as CustomerId, ")
select @query>>append("customer_name as CustomerName, ")
select @query>>append("o.item_id as ItemId, i.item_name as

ItemName, ")
select @query>>append("quantity as Quantity, o.unit as unit ")
select @query>>append("from customers c, orders o, items i ")
select @query>>append("where c.customer_id=o.customer_id and

o.item_id=i.item_id ")

declare @rsx xml.resultset.ResultSetXml

select @rsx = new xml.resultset.ResultSetXml
(@query>>toString(), 'none', 'yes', 'external' , '')

insert into resultset_docs values("1", @rsx)

5-152 XML in the Database

A customizable example for different result sets Adaptive Server version 12.5 Beta

Accessing the columns of stored ResultSet documents

In “Storing an XML ResultSet document in a SQL column” on page
151 you inserted a complete XML ResultSet document into the rs_doc
column of the resultset_docs table. In this section, use methods of the
ResultSetXml class to reference and update a stored ResultSet .

A client-side call

The main() method of the ResultSetElements class is executed in a client
environment. It copies the file OrderResultSet.xml, constructs a
ResultSetXml document from it, and then accesses and updates the
columns of the ResultSet .

import java.io.*;
import util.*;
public class ResultSetElements {
 public static void main (String[] args) {
 try{

String xml =
FileUtil.file2String("OrderResultSet.xml");

xml.resultset.ResultSetXml rsx
 = new xml.resultset.ResultSetXml(xml);

// Get the columns containing customer and date info
String cname = rsx.getColumn(0, "CustomerName");
String cid = rsx.getColumn(0, "CustomerId");
String date = rsx.getColumn(0, "Date");

// Get the elements for item 1 (numbering from 0)
String iName1 = rsx.getColumn(1, "ItemName");
String iId1 = rsx.getColumn(1, "ItemId");
String iQ1 = rsx.getColumn(1, "Quantity");
String iU = rsx.getColumn(1, "unit");

System.out.println("\nBEFORE UPDATE: ");
System.out.println("\n "+date+ " "+ cname + " " +

cid);
System.out.println("\n "+ iName1+" "+iId1+" "

+ iQ1 + " " + iU + "\n");

// Set the elements for item 1 (numbering from 0)
rsx.setColumn(1, "ItemName", "Flange");
rsx.setColumn(1, "ItemId", "777");
rsx.setColumn(1, "Quantity","3");
rsx.setColumn(1, "unit", "13");

New Features for Adaptive Server Version 12.5 5-153

Adaptive Server version 12.5 Beta A customizable example for different result sets

// Get the updated elements for item 1 (numbering
from 0) iName1 = rsx.getColumn(1, "ItemName");

iId1 = rsx.getColumn(1, "ItemId");
iQ1 = rsx.getColumn(1, "Quantity");
iU = rsx.getColumn(1, "unit");

System.out.println("\nAFTER UPDATE: ");
System.out.println("\n "+date+ " "+ cname + " " +

cid);
System.out.println("\n "+ iName1+" "+iId1+" "

+ iQ1 + " " + iU + "\n");

 // Copy the updated document to another file
FileUtil.string2File("Order-updated.xml",

rsx.getXmlText());

} catch (Exception e) {
System.out.println("Exception:");
e.printStackTrace();
}

}
 }

The FileUtil.string2File() method stores the updated ResultSet in the file
Order-updated.xml. The ResultSetMetaData of the updated document is
unchanged. The updated ResultSetData of the document is as follows
with new values in the second item.

<ResultSetData>
 <Row>
 <Column name="Date">1999-07-04 00:00:00.0</Column>
 <Column name="CustomerId">123</Column>
 <Column name="CustomerName">Acme Alpha</Column>
 <Column name="ItemId">987</Column>
 <Column name="ItemName">Widget</Column>
 <Column name="Quantity">5</Column>
 <Column name="unit">1</Column>
 </Row>
 <Row>
 <Column name="Date">1999-07-04 00:00:00.0</Column>
 <Column name="CustomerId">123</Column>
 <Column name="CustomerName">Acme Alpha</Column>
 <Column name="ItemId">777</Column>
 <Column name="ItemName">Flange</Column>
 <Column name="Quantity">3</Column>
 <Column name="unit">13</Column>
 </Row>
 <Row>

5-154 XML in the Database

A customizable example for different result sets Adaptive Server version 12.5 Beta

 <Column name="Date">1999-07-04 00:00:00.0</Column>
 <Column name="CustomerId">123</Column>
 <Column name="CustomerName">Acme Alpha</Column>
 <Column name="ItemId">579</Column>
 <Column name="ItemName">Type 3 clasp</Column>
 <Column name="Quantity">1</Column>
 <Column name="unit">1</Column>
 </Row>
 </ResultSetData>
 </ResultSet>

A server-side script

Using the SQL script in “Storing an XML ResultSet document in a
SQL column” on page 151, you stored complete XML ResultSet

documents in the rs_doc column of the resultset_docs table. The
following SQL commands, executed in a server environment,
reference and update the columns contained in those documents.

You can select columns by name or by number:

• Select the columns of row 1, specifying columns by name:

select rs_doc>>getColumn(1, "Date"),
rs_doc>>getColumn(1, "CustomerId"),
rs_doc>>getColumn(1, "CustomerName"),
rs_doc>>getColumn(1, "ItemId"),
rs_doc>>getColumn(1, "ItemName"),
rs_doc>>getColumn(1, "Quantity"),
rs_doc>>getColumn(1, "unit")

 from resultset_docs

• Select the columns of row 1, specifying columns by number:

select rs_doc>>getColumn(1, 0),
rs_doc>>getColumn(1, 1),
rs_doc>>getColumn(1, 2),
rs_doc>>getColumn(1, 3),
rs_doc>>getColumn(1, 4),
rs_doc>>getColumn(1, 5),
rs_doc>>getColumn(1, 6)

 from resultset_docs

Specify some nonexisting columns and rows. Those references return
null values.

New Features for Adaptive Server Version 12.5 5-155

Adaptive Server version 12.5 Beta A customizable example for different result sets

Select rs_doc>>getcolumn(1, "itemid"),
rs_doc>>getcolumn(1, "xxx"),
rs_doc>>getcolumn(1, "Quantity"),
rs_doc>>getcolumn(99, "unit"),
rs_doc>>getColumn(1, 876)

 from resultset_docs

Update columns in the stored ResultSet document:

update resultset_docs
 set rs_doc = rs_doc>>setColumn(1, "ItemName", "Wrench")
 where id=”1”

update resultset_docs
 set rs_doc = rs_doc>>setColumn(1, "ItemId", "967")
 where id=”1”

update resultset_docs
 set rs_doc = rs_doc>>setColumn(1, "unit", "6")
 where id=”1”

select rs_doc>>getColumn(1, "ItemName"),
rs_doc>>getColumn(1, "ItemId"),
rs_doc>>getColumn(1, "unit")

 from resultset_docs
 where id=”1”

Quantified comparisons in stored ResultSet documents

ResultSetXml contains two methods, allString() and someString() , for
quantified searches on columns of a ResultSetXML document. To
illustrate these two methods, first create some example rows in the
order_results table.

The order_results table has been initialized with one row, whose id =
“1” and whose rs_doc column contains the original Order used in all
examples.

The following statements copy that row twice, assigning id values of
“2” and “3” to the new rows. The order_results table now has three
rows, with id column values of “1,” “2,” and “3” and the original
Order.

insert into resultset_docs(id, rs_doc) select "2", rs_doc
 from resultset_docs where id="1"

insert into resultset_docs (id, rs_doc) select "3", rs_doc
 from resultset_docs where id="1"

The following statements modify the row with an id column value of
“1” so that all three items have an ItemId of “100”:

5-156 XML in the Database

A customizable example for different result sets Adaptive Server version 12.5 Beta

update resultset_docs
 set rs_doc = rs_doc>>setColumn(0, "ItemId", "100")
 where id="1"

update resultset_docs
 set rs_doc = rs_doc>>setColumn(1, "ItemId", "110")
 where id="1"

update resultset_docs
 set rs_doc = rs_doc>>setColumn(2, "ItemId", "120")
 where id="1"

The following update statement modifies the row with id = “3” so that
its second item (from 0) has an ItemId of “999”:

update resultset_docs
 set rs_doc = rs_doc>>setColumn(2, "ItemId", "999")
 where id="3"

The following select statement displays the id column and the three
ItemId values for each row:

select id, rs_doc>>getColumn(0, "ItemId"),
rs_doc>>getColumn(1, "ItemId"),
rs_doc>>getColumn(2, "ItemId")

 from resultset_docs

The results of the select are:

1 100 110 120
2 987 654 579
3 987 654 999

Note the following:

• The row with id of “2” is the original Order data.

• The row with id of “1” has been modified so that all ItemIds for
that row are less than “200.”

• The row with id of “3” has been modified so that some ItemId for
that row is greater than or equal to “9999,”

The following expresses these quantifications with the allString() and
someString() methods:

select id, rs_doc>>allString(3, "<", "200") as
“ALL test”
 from resultset_docs

select id, rs_doc>>someString(3, ">=", "999") as
“SOME test”
 from resultset_docs

New Features for Adaptive Server Version 12.5 5-157

Adaptive Server version 12.5 Beta A customizable example for different result sets

select id as “id for ALL test” from resultset_docs
 where rs_doc>>allString(3, "<",
"200")>>booleanValue() = 1

select id as “id for SOME test” from resultset_docs
 where rs_doc>>someString(3, ">=",
"999")>>booleanValue() = 1

The first two statements show the quantifier in the select list and give
these results:

The last two statements show the quantifier in the where clause and
give these results:

• ID for “all” test = “3”

• ID for “some” test = “1”

In the examples with the quantifier method in the where clause, note
that:

• The where clause examples compare the method results with an
integer value of 1. SQL does not support the Boolean data type as
a function value, but instead treats Boolean as equivalent to
integer values 1 and 0, for true and false.

• The where clause examples use the booleanValue() method. The
allString() and someString() methods return type java.lang.Boolean,
which is not compatible with SQL integer. The Java booleanValue()

method returns the simple Boolean value from the Boolean
object, which is compatible with SQL integer. This behavior is a
result of merging the SQL and Java type systems.

The quantifier methods return java.lang.Boolean instead of simply
Java boolean so that they can return null when the column is out of
range, which is consistent with the SQL treatment of out-of-range
conditions.

The following statements show quantifier references that specify
column 33, which does not exist in the data:

select id, rs_doc>>allString(33, "<", "200") as
“ALL test”
 from resultset_docs

ID “all” test “some” test

1 true false

2 false false

3 false true

5-158 XML in the Database

A customizable example for different result sets Adaptive Server version 12.5 Beta

select id as “id for ALL test” from resultset_docs
 where rs_doc>>allString(33, "<",
"200")>>booleanValue() = 1

The ID for the “all” test = (empty).

Using the hybrid storage technique

For faster and easier access to the CustomerID element, add a new
customer_id column to the resultset_docs table, and populate it with
extracted CustomerID elements:

alter table resultset_docs
add customer_id varchar(5) null

update resultset_docs
set customer_id = rs_doc>>getColumn(1,

"CustomerId")

XML ResultSet documents: invalid XML characters

This section describes two techniques for dealing with XML markup
characters in the result set.

• When data values contain XML markup characters, you can
enclose these values in a CDATA section.

• When column names are quoted identifiers that contain XML
markup characters, you can substitute the quotes and markup
characters with XML entity symbols.

Each technique is described in the following sections.

Using CDATA sections

The cdata parameter of the ResultSetXml constructor indicates which (if
any) columns of the SQL result set contain character data to be
bracketed as CDATA sections in the output XML. The cdata
parameter can be “all,” “none,” or a string of zero or one characters,
where a “1” in the I-th position indicates that the I-th column should
be bracketed as a CDATA section.

Id “all” test

1 NULL

2 NULL

3 NULL

New Features for Adaptive Server Version 12.5 5-159

Adaptive Server version 12.5 Beta A customizable example for different result sets

For example, create the table cdata in which data values in columns 2,
3, and 4 contain XML markup characters that must be bracketed as
CDATA section in the output:

create table cdata (
id int,
a varchar(250),
b varchar(250),
c varchar(250)

)
 go

insert into cdata values (
1,
"<p>some samples:</p>first

second",
"x > y || w & z",
"x > y || w & z"
)

The following SQL statement generates an XML ResultSet document
for this table, specifying a value “0111” for the cdata parameter.

insert into resultsets (id, rs)
values ("2", new xml.resultset.ResultSetXml(

"select * from cdata", '0111', 'yes',
'external', ''))

This SQL statement generates a SQL script for that XML ResultSet :

update resultsets
set script =

rs>>toSqlScript("markup_col_names",
"col_", "both", "yes")

where id="2"

The following utility calls retrieve the XML ResultSet and its SQL
script:

java util.FileUtil -S "$SERVER" -A getstring -O cdata.xml \
-Q "select new util.StringWrap(rs>>getXmlText()) from

resultsets where id='2'"

java util.FileUtil -S "$SERVER" -A getstring -O cdata.script\
-Q "select new util.StringWrap(script) from resultsets

where id='2'"

This is the XMLResultSet :
<?xml version="1.0"?>
<!DOCTYPE ResultSet SYSTEM 'ResultSet.dtd'>

5-160 XML in the Database

A customizable example for different result sets Adaptive Server version 12.5 Beta

<ResultSet>
 <ResultSetMetaData getColumnCount="4">
 <ColumnMetaData getColumnDisplaySize="11" getColumnLabel="id"
getColumnName="id" getColumnType="4" getPrecision="0" getScale="0"
isAutoIncrement="false" isCurrency="false"
isDefinitelyWritable="false" isNullable="false" isSigned="true" />
 <ColumnMetaData getColumnDisplaySize="250" getColumnLabel="a"
getColumnName="a" getColumnType="12" getPrecision="0" getScale="0"
isAutoIncrement="false" isCurrency="false"
isDefinitelyWritable="false" isNullable="false" isSigned="false" />
 <ColumnMetaData getColumnDisplaySize="250" getColumnLabel="b"
getColumnName="b" getColumnType="12" getPrecision="0" getScale="0"
isAutoIncrement="false" isCurrency="false"
isDefinitelyWritable="false" isNullable="false" isSigned="false" />
 <ColumnMetaData getColumnDisplaySize="250" getColumnLabel="c"
getColumnName="c" getColumnType="12" getPrecision="0" getScale="0"
isAutoIncrement="false" isCurrency="false"
isDefinitelyWritable="false" isNullable="false" isSigned="false" />
 </ResultSetMetaData>
 <ResultSetData>
 <Row>
 <Column name="id">1</Column>
 <Column name="a">

<![CDATA[<p>some samples:
</p>firstsecond]]>

 </Column>
 <Column name="b">

<![CDATA[x > y || w & z]]>
 </Column>
 <Column name="c">

<![CDATA[x > y || w & z]]>
 </Column>
 </Row>
 </ResultSetData>
 </ResultSet>

This is the SQL script:

set quoted_identifier on
 create table markup_col_names (
 id integer not null ,
 a varchar (250) not null ,
 b varchar (250) not null ,
 c varchar (250) not null
)
 insert into markup_col_names values (
 1,
 '<p>some samples:</p>firstsecond',
 'x > y || w & z',
 'x > y || w & z'
)

New Features for Adaptive Server Version 12.5 5-161

Adaptive Server version 12.5 Beta A customizable example for different result sets

Column names

The XML generated for a SQL result set specifies the column names
of the result set in the ResultSetMetaData section and in the ResultSetData

section.

The following SQL select specifies a result set:

select 1 as “A>2”, 2 as “B & 3”, 3 as “A<<b”, 4 as
”D “”or”” e”

The result set has a single row, whose column values are 1, 2, 3, and
4. The names of those columns are quoted identifiers that contain
XML markup characters.

Since the ResultSetXml document for such a result set specifies the
column names in XML attributes, the quotation marks and XML
markup characters in those names must be replaced with XML entity
symbols.

This problem cannot be handled with CDATA sections, since you
cannot use CDATA sections in attribute values.

The following is a SQL script that generates the ResultSetXml

document for the result set, then generates the SQL script for that
ResultSetXml document.

Store the generated ResultSetXml document in the following table:

create table resultsets
 (id char(5) unique,
 rs xml.resultsets.ResultSetXml null,
 script java.lang.String null)

The following SQL statement generates the XML ResultSet document
and stores it into the resultsets table:

insert into resultsets (id, rs)
 values ("1", new xml.resultsets.ResultSetXml(
 "select 1 as ""A > 2"", 2 as ""b & 3"",
 3 as ""a<<b"", 4 as ""d """"or""""
e"" ",
 'none', 'yes', 'external', ''))

This SQL statement generates the SQL script for the XML ResultSet :

update resultsets
 set script =
rs>>toSqlScript("markup_col_names", "col_",

"create", "yes")
 where id="1"

5-162 XML in the Database

A customizable example for different result sets Adaptive Server version 12.5 Beta

The following utility calls retrieve the XML ResultSet and its SQL
script into client files cdata.xml and cdata.script.

java util.FileUtil -S "$SERVER" -A getstring -O cdata.xml \
-Q "select new util.StringWrap(rs>>getXmlText()) from

resultsets where id='2'"

java util.FileUtil -S "$SERVER" -A getstring -O cdata.script\
-Q "select new util.StringWrap(script) from resultsets

where id='2'"

The XML ResultSet document for the CDATA example is:

<?xml version="1.0"?>

<!DOCTYPE ResultSet SYSTEM 'ResultSet.dtd'>

<ResultSet>
 <ResultSetMetaData getColumnCount="4">
 <ColumnMetaData getColumnDisplaySize="11" getColumnLabel="A > 2"
getColumnName="A > 2" getColumnType="4" getPrecision="0" getScale="0"
isAutoIncrement="false" isCurrency="false"
isDefinitelyWritable="false" isNullable="false" isSigned="true" />
 <ColumnMetaData getColumnDisplaySize="11" getColumnLabel="b & 3"
getColumnName="b & 3" getColumnType="4" getPrecision="0" getScale="0"
isAutoIncrement="false" isCurrency="false"
isDefinitelyWritable="false" isNullable="false" isSigned="true" />
 <ColumnMetaData getColumnDisplaySize="11" getColumnLabel="a<<b"
getColumnName="a<<b" getColumnType="4" getPrecision="0" getScale="0"
isAutoIncrement="false" isCurrency="false"
isDefinitelyWritable="false" isNullable="false" isSigned="true" />
 <ColumnMetaData getColumnDisplaySize="11" getColumnLabel="d 'or' e"
getColumnName="d 'or' e" getColumnType="4" getPrecision="0" getScale="0"
isAutoIncrement="false" isCurrency="false"
isDefinitelyWritable="false" isNullable="false" isSigned="true" />
 </ResultSetMetaData>
 <ResultSetData>
 <Row>
 <Column name="A > 2">1</Column>
 <Column name="b & 3">2</Column>
 <Column name="a<<b">3</Column>
 <Column name="d 'or' e">4</Column>
 </Row>
 </ResultSetData>
 </ResultSet>

The following is the output SQL script for the CDATA example:

set quoted_identifier on
 create table markup_col_names (
 "A > 2" integer not null ,
 "b & 3" integer not null ,
 "a<<b" integer not null ,
 "d ""or"" e" integer not null

New Features for Adaptive Server Version 12.5 5-163

Adaptive Server version 12.5 Beta XML methods

XML methods

This section describes the XML methods that are provided with
Adaptive Server.

5-164 XML in the Database

parse(String xmlDoc) Adaptive Server version 12.5 Beta

parse(String xmlDoc)

Description

Takes a Java string as an argument and returns SybXmlStream . You can
use this to query a document using XQL.

Syntax

parse(java_string xml_document)

Where:

• String is a Java string.

• xml_document is the XML document in which the string is located.

Usage

• parse() returns SybXmlStream.

• If a DTD is supplied, the parser also validates the command.

• The parser does not:

- Parse any external DTDs

- Perform any external links (for example, XLinks)

- Navigate through IDREFs

New Features for Adaptive Server Version 12.5 5-165

Adaptive Server version 12.5 Beta parse(InputStream xml_document)

parse(InputStream xml_document)

Description

Takes an InputStream as an argument and returns SybXmlStream . You can
use this to query a document using XQL.

Syntax

parse(Input_Stream xml_document)

Where:

• InputStream is an input stream.

• xml_document is the XML document from which the input stream
originates.

Usage

• parse() returns SybXmlStream .

• If a DTD is supplied, the parser also validates the command.

• The parser does not:

- Parse any external DTDs

- Perform any external links (for example, XLinks)

- Navigate through IDREFs

5-166 XML in the Database

query(String query, String xmlDoc) Adaptive Server version 12.5 Beta

query(String query, String xmlDoc)

Description

Queries an XML document. Uses the XML document as the input
argument.

Syntax

query(String query, String xmlDoc)

Where:

• String query is an XQL query encapsulated in Java.lang.string.

• String xmldoc is a Java.io.InputStream which can be formed by files,
URLs, and so on.

Examples

The following returns the result as a Java string.

String result= Xql.query("/bookstore/book/author",
"<xml>...</xml>");

Usage

Returns a Java string, which is a well-formed XML document.

New Features for Adaptive Server Version 12.5 5-167

Adaptive Server version 12.5 Beta query(String query, InputStream xmlDoc)

query(String query, InputStream xmlDoc)

Description

Queries an XML document using an input stream as the second
argument.

Syntax

query(String query, InputStream xmlDoc)

Where:

• String query is an XQL query encapsulated in Java.lang.string.

• InputStream xmlDoc is a Java.IO.InputStream which can be formed
from XML documents, URLs, and so on.

Examples

The following queries an XML document stored in Adaptive Server.

FileInputStream xmlStream = new FileInputStream("doc.xml");
String result = Xql.query("/bookstore/book/author", xmlStream);

The following example queries an XML document on the Web using
a URL as the search argument:

URL xmlURL = new URL("http://mywebsite/doc.xml");
String result = Xql.query("/bookstore/book/author",
xmlURL.openStream());

Usage

Returns a Java string. The result of the query is encapsulated in a
string as a well-formed XML document.

5-168 XML in the Database

query(String query, SybXmlStream xmlDoc) Adaptive Server version 12.5 Beta

query(String query, SybXmlStream xmlDoc)

Description

Queries the XML document using a parsed XML document as the
second argument.

Syntax

query(String query, SybXmlStream xmlDoc)

Where:

• String query is the string you are searching for.

• SybXmlStream is a result provided by an earlier parse() . This is a
Sybase-proprietary format that provides faster performance.

Examples

The following example creates an XML stream by first parsing it and
then using the result to execute an XQL query.

SybXmlStream xmlStream = Xql.parse("<xml>..</xml>);
String result = Xql.query("/bookstore/book/author",xmlStream);

Usage

Returns a Java string where the result of the query is a encapsulated
in a well-formed XML document.

New Features for Adaptive Server Version 12.5 5-169

Adaptive Server version 12.5 Beta query(String query, JXml jxml)

query(String query, JXml jxml)

Description

Queries an XML document stored in a JXML format.

Syntax

query(String query, JXml jxml)

Where:

• String query is the string for which you are searching.

• JXml jxml is an object created using the Adaptive Server object
code.

Examples

The following example creates a JXML object and then runs a query
by extracting the XML document from this object.

JXml xDoc = new JXml("<xml>...</xml>");;
String result = Xql.query("/bookstore/book/author", xDoc);

Usage

Allows you to execute a query on an JXML document using XQL.

5-170 XML in the Database

SybXmlStream Adaptive Server version 12.5 Beta

SybXmlStream

Description

Defines a method.

Syntax

SybXmlStream {method}

Examples

The following is the Java implementation of SybXmlStream .

public interface SybXmlStream {
/*
** seek method
** @param pos - position in the stream where the pointer should
set to
** @return none
*/
void seek(long pos) throws IOException;
}

Usage

• Used for storing XML data, which will be queried at a later time.

• SybXmlStream is a wrapper around streaming interfaces.

• SybXmlStream requires the implementation to include the seek()

method

New Features for Adaptive Server Version 12.5 5-171

Adaptive Server version 12.5 Beta SybMemXmlStream

SybMemXmlStream

Description

Holds the parsed XML document in main memory.

Syntax

SybMemXmlStream

Examples

The following is the Java implementation of SybMemXmlStream :

 public class SybMemXmlStream extends ByteArrayInputStream
implements SybXmlStream {
..
}

Usage

• The parse() method returns an instance of SybMemXmlStream after
parsing an XML document.

• SybmemXmlStream is an implementation of SybXmlStream that retains
the whole stream in main memory.

5-172 XML in the Database

SybFileXmlStream Adaptive Server version 12.5 Beta

SybFileXmlStream

Description

Allows you to query a file in which you have stored a parsed XML
document.

Syntax

SybFileXmlStream { file_name }

Where file_name is the name of the file in which you stored the parsed
XML document.

Examples

1. The following is the Java implementation of
SybFileXmlStream :

public class SybFileXmlStream extends InputStream
implements SybXmlStream{

...
private RandomAccessFile raFile;
}

2. In the following, a member of the RandomAccessFile
reads a file and positions the data stream:

SybXmlStream xis = Xql.parse("<xml>..</xml>");
FileOutputStream ofs = new FileOutputStream("xml.data");
((SybMemXmlStream)xis).writeToFile(ofs);

SybXmlStream is = new SybFileXmlStream("xml.data");
String result =
Xql.query("/bookstore/book/author", is);

Usage

Is a wrapper around RandomAccessFile , which provides the seek()

method on a file. The following are the steps for using
SybFileXmlStream :

• Parse the XML document

• Store the parsed XML in a file.

• Access the class with SybFileXmlStream .

New Features for Adaptive Server Version 12.5 5-173

Adaptive Server version 12.5 Beta result

result

Description

The result set returned by the query() method as a Java string. The
result string is a well-formed XML document.

Syntax

result = string

Where string is a well-formed XML document.

Examples

String result ;
If ((result = Xql.query("/bookstore/book/author",<xml>..</xml))

! =
Xql.EmptyResult)
{

return result;
}

Usage

• The result set is returned as a Java string.

• If the result set is empty, result () returns
<xql_result></xql_result>.

• result() includes a static variable, xql.EmptyResult, which contains
an empty XML result document and can be used for testing the
empty result returned from an XQL method. For example:

String result ;
If ((result = Xql.query("/bookstore/book/author",<xml>..</xml))
! = Xql.EmptyResult)
{
return result;
}

5-174 XML in the Database

result Adaptive Server version 12.5 Beta

New Features for Adaptive Server Version 12.5 6-175

6 Unicode Enhancements 6.

Sybase believes that Unicode, with its ability to represent nearly all
of the worlds written languages in a single character set, will pave
the way for multilingual interoperability in the 21st century. With
this in mind, we continue to enhance our Unicode features in ASE.

New Datatypes Added

In this release, two new datatypes using the UTF-16 encoding of the
Unicode character set have been added. The new unichar and
univarchar datatypes are independent of the existing char and varchar
dataypes, but mirror their behavior. Unichar is a fixed-width, non-
nullable data type (like char) and univarchar is a variable-width,
nullable data type (like varchar). The set of built-in string functions
that operate on char and varchar, will also operate on unichar and
univarchar.

Note however, that unlike the existing char and varchar, the new
unichar and univarchar only store UTF-16 characters and have no
connection to the default character set ID or default sort order ID
ASE configuration option. To use these new data types, the default
character set for the server must be set to UTF-8.

The main advantage of these new datatypes is efficiency. The UTF-16
character types are approximately 33% more space efficient than
UTF-8 for Asian characters.

Each unichar/univarchar character requires two bytes of storage; a
unichar/univarchar column consists of 16-bit Unicode values. The
following command creates a table with one unichar column for 10
Unicode values requiring 20 bytes of storage:

Create table unitbl (unicol unichar (10))

The length of a unchar/univarchar column is limited by the size of a
data page in ASE, just as in char/varchar columns.

New Configuration Options

Three new configuration options have been added for this new
feature:

• enable surrogate processing

6-176 Unicode Enhancements

New Configuration Options Adaptive Server version 12.5 Beta

• enable unicode normalization

• default unicode sort order

The following paragraphs contain information on these options

Enable Surrogate Processing

Unicode surrogate pairs use the storage of two 16-bit Uncode values
(four bytes). Keep this in mind when declaring columns intended to
store Unicode surrogate pairs. By default, ASE automatically
manages surrogates without splitting the pair. To disable surrogate
handling in ASE, use the following command:

Sp_configure “enable surrogate processing”,0

Once disabled, all Unicode pairs are ignored and surrogate pairs
may be split during processing.

Enable Unicode Normalization

By default, all Unicode data are normalized before being stored into
a data page. The following command can be used to disable Unicode
normalization in ASE:

SP_configure “enable unicode normalization”, 0

If normalization is disabled, it cannot be re-enabled. This prevents
normalized and non-normalized data from mixing.

➤ Note
We strongly advise you not to change this option once unichar/univarchar
data has been entered into ASE.

Default Unicode Sortorder

Collating unichar and univarchar data is controlled by a new
configuration option, which defines the default Unicode sort order.
The default Unicode sort order option also affects the indices of
unichar/univarchar columns. This is analogous to the default sort
order ID option affecting the indices for char/varchar columns.

To define the default Unicode sort order, the command is:

sp_configure, default unicode sortorder”, 0, “sort name”

New Features for Adaptive Server Version 12.5 6-177

Adaptive Server version 12.5 Beta New Configuration Options

Valid “sort names” are as follows:

Table 6-1:

Name Description

defaultML default Unicode ML ordering

binary Default binary ordering

thaidict Thai dictionary ordering

scandict Scandinavian dictionary ordering

scannocp Scandinavian case insensitive ordering

dict English/French/German dictionary ordering

nocase English/French/German case insensitive
ordering

noaccent English/French/German accent insensitive
ordering

espdict Spanish dictionary ordering

espnocs Spanish case insensitive ordering

espnoac Spanish accent insensitive ordering

rusdict Russian dictionary ordering

rusnocs Russian case insensitive ordering

cyrdict Cyrillic dictionary ordering

cyrnocs Cyrillic case insensitive ordering

elldict Greek dictionary ordering

hundict Hungarian dictionary ordering

hunnoac Hungarian accent insensitive ordering

hunnocs Hungarian case insensitive ordering

turkdict Turkish dictionary ordering

turknoac Turkish accent insensitive ordering

turknocs Turkish case insensitive ordering

sjisbin Japanese SJIS binary ordering

iso14651 ISO 14651 ordering

eucjisbin Japanese eucjis

gb2312bin Chinese gb2312

6-178 Unicode Enhancements

Functions Supporting the New Datatypes Adaptive Server version 12.5 Beta

Functions Supporting the New Datatypes

The existing built-in functions that support the new
unichar/univarchar datatypes include the following:

• ascii

• charindex

• char_length (surrogate pairs are counted as two characters)

• col_length

• compare

• convert

• count

• datalength

• difference

• isnull

• lower

• ltrim (blanks are defined to be U+ 0020 only)

• max

• min

• patindex

• replicate

• reverse

• right

• rtrim (blanks are defined to be U+0020 only)

• soundex (only works for simple Roman characters)

• sortkey

cp932msbin Japanese cp932

b165bin Chinese b165

euckcsbin Korean euckcs

utf8bin matches unicode UTF-8 binary sort order

Table 6-1:

Name Description

New Features for Adaptive Server Version 12.5 6-179

Adaptive Server version 12.5 Beta String Concatenation

• stuff

• substring

• upper

New Functions Added

Four new functions have been added to support the new unichar and
univarchar datatypes:

• uchar_expr to_unichar (integer_expr)

Analogous to the char built-in function for char/varchar data. This
function returns a unichar expression having the value of the integer
expression. A single Unicode value is returned for an integer
expression in the range of 0x0000 to 0xFFFF. If the integer expression
is in the surrogate range (0xD800 to 0xDFFF), an exception is raised.

• int uscalar (uchar_expr)

Analogous to the ascii built-in function for char/varchar data. This
function returns the Unicode scalar value for the first Unicode
character in an expression. If the first character is not the high order
half of a surrogate pair, the value will be in the range of 0x0000 to
0xFFFF. If the first character is the high order half of a surrogate pair,
then a second value must be a low-order half. The return value in this
case will be in the range of 0x10000 to 0x10FFFF. If this function is
called on an unmatched surrogate half, an exception is raised.

• int uhighsurr (uchar_expr, start)

Returns one if the Unicode value at position “start” is the high half of
a surrogate pair. Otherwise, returns zero.

• int ulowsurr(uchar_expr, start)

Returns one if the Unicode value at position “start” is the low half of
a surrogate pair. Otherwise, returns zero.

String Concatenation

If either “str1” or “str2” is a unichar/univarchar datatype, the result is
a unichar/univarchar value.

6-180 Unicode Enhancements

Comparison Operators Adaptive Server version 12.5 Beta

Comparison Operators

The following comparison operators have been updated to handle
unichar/univarchar exactly like char/varchar. Note especially that
blanks (U+0020) are ignored in comparisons, just as they are for
char/varchar.

0=(equal to)

0>(greater than)

0<(less than)

0>+(greater than or equal to)

0<+(less than or equal to)

0<>(not equal to)

0!=(not equal to)

0!>(not greater than)

0!<(not less than)

Relational Expressions

All relational expressions involving at least one expression of type
unichar/univarchar will be based on the default Unicode sort order. If
one expression is of type unichar/univarchar and the other is of type
char/varchar, the latter will be implicitly converted to
unichar/univarchar.

New Features for Adaptive Server Version 12.5 7-181

7 Unicode Enhancements 7.

Using bcp While Converting Data

You can copy data encoded in a different character set than the
server, into the server. To do this, bcp first converts the data into the
character set of the server, then copies the data into a table.

For example, assume the data in datafile.dat is encoded in CP 1252
and the server character set is CP 850. As the data is copied into the
db1..table1 table, it is converted from CP 1252 to CP 850. The -J flag is
used to indicate the character set of the datafile.dat file:

bcp db1..table1 in datafile.dat -c -Jcp1252 -Usa -P -Sserver

The bcp copy is successful if the data length does not change during
the conversion.

Copying Data That Changes Length

Note that bcp cannot correctly convert and copy data into a table if
the conversion results in a change of data length. If this occurs, the
process is aborted and this message appears:

bcp insert operation is disabled when LONGCHAR
capability is turned on and data size is changing
between client and server character sets, since
bcp does not support LONGCHAR yet.

Suppose you are copying data from server1, whose character set is
Shift-JIS, a two-byte character encoding, into server2 whose
character set is UTF-8. When Shift-JIS data is converted to UTF-8, it
becomes three bytes. In this situation the bcp copy would fail.

To work around this bcp limitation, do the following:

1. Copy the data out of server1 using the-J flag to specify the
character set of server2, as follows:

bcp old_database..old_table out datafile.dat -c -Jutf8 -Usa -P -Sserver1

bcp converts the data from the character set of server1 (Shift-JIS)
to the character set of server2 (UTF-8) into the datafile.dat file.

2. Copy the data into server2, as follows:

bcp new_database..new_table in datafile.dat -c -Usa -P -Sserver2

7-182 Unicode Enhancements

Adaptive Server version 12.5 Beta

Now when you copy the data into server2, it is already encoded in
the server’s default character set and no data conversion is necessary.
The bcp copy will succeed.

New Features for Adaptive Server Version 12.5 8-183

8 Using union operators in select
statements 8.

This section describes the changes in Adaptive Server version 12.5
for enabling union operators in select statements.

In earlier versions of Adaptive Server, union operators in select
statements that define views were not supported. Adaptive Server
version 12.5 removes this restriction.

You might use this feature, for example, to split a large table into
subtables. The data can be partitioned between the subtables based
on ranges of data values in one of the columns. You can then define a
view that uses union all to combine selects of all the subtables into a
single result set. You can then issue select statements on the view
containing the union.

create view year1998Sales

as

select * from Feb1998Sales

union all

select * from Apr1998Sales

union all

select * from May1998Sales

(More to come)

select * from June998Sales

union all

select * from Jul1998Sales

union all

select * from Aug1998Sales

union all

select * from Sep1998Sales

union all

...

In this example the view year1998Sales consists of 12 subtables
recording sales for 1998, one for each month. It is easier to maintain
and update the subtables independently than to update the entire
table. Fewer rows are accessed and users can still access other
subtables which are not being updated.

8-184 Using union operators in select statements

Adaptive Server version 12.5 Beta

You can create views that reference Oracle, DB2, and Informix tables,
for example, as well as local tables:

create view partitioned _view as

select * from db2_table

union

select * from oracle_table

union

select * from informix_table

union

select * from local_table

go

select * frompartitioned_view

go

A union operator within a create view statement can also be used on
proxy (remote) tables.

Limitations

• The limit on the number of tables in a union view is 256.

• You cannot update or insert into a view whose select statement
contains the union operator.

• You cannot delete from a view whose select statement contains the
union operator.

• The select statement that contains the union view cannot include
order by or compute clauses, or the keyword into.

Error Messages

197 - cannot use check option in union view.

4427 - union view cannot be updated.

New Features for Adaptive Server Version 12.5 9-185

9 Component Integration Services 9.

Release 12.5 of Adaptive Server includes many enhancements to
Component Integration Services.

Component Integration Services is fully compatible with the new
features of Adaptive Servicer Enterprise documented in this book.

• distributed query optimization

• transaction management

• extended data access

• supportability

• login name/password mapping to remote systems

• XNL - Extensible New Limits

• Unicode support - new data types for support of Unicode
character set

• LDAP - Directory Services

• SSL - Secure communications

• Union in Views

Enhancements to CIS

The Adaptive Server 12.5 release includes these new Component
Integration Services (CIS) features:

• Distributed Query Optimization Enhancements

• Enhanced Data Access via File System

• Distributed Transaction Management Enhancements

• Administration and Diagnostic Enhancements

• Cascading Proxy Support

• Enhanced Mapping of External Logins

• Enhanced Mapping of External Logins

• Quoted Identifier Support

• Enhanced Full Text Search Capabilities

• Enhancements to Proxy Table Support for Remote Procedures

• Proxy Database Support

9-186 Component Integration Services

File System Access Adaptive Server version 12.5 Beta

• New Global Variables and Set Commands

File System Access

The 12.5 release provides new features that enable access to the file
system through the SQL language. With these new features, it is
possible to create proxy tables that are mapped to file system
directories, or to individual files.

Directory Access

A new class of proxy tables is allowed in the 12.5 release that enables
SQL access to file system directories and their underlying files. The
supported syntax is:

create proxy_table <table_name>
external directory at "directory pathname[;R]"

The directory pathname must reference a file system directory visible
to and searchable by the Adaptive Server process. A proxy table is
created which maps column names to attributes of files that exist
within the directory. If the ’;R’ (indicating "recursion") extension is
added to the end of pathname, CIS extracts file information from all
directories subordinate to the pathname. The following table
contains a description of the proxy table columns that are created
when this command successfully completes:

Table 9-1: Proxy Table columns

Column
 Name Datatype Description

id numeric(24) Identity value consisting of values from st_dev
and st_ino (See stat(2)). These two values are
converted first to a single string (format:
"%d%014ld"), and the string is then converted
to a numeric value. This column is also
designated a ’primary key’, to facilitate usage
with the Full Text Search server.

filename varchar(n) the name of the file within the directory
specified in at ’pathname’, or within directories
subordinate to pathname. While the length of
pathname is limited to 255 bytes, the total
length (n) of filename is system dependent, and
specified by the definition of MAXNAMLEN.
For Solaris systems, this value is 512 bytes; for
most other systems this will be 255 bytes.

New Features for Adaptive Server Version 12.5 9-187

Adaptive Server version 12.5 Beta File System Access

A proxy table that maps to a file system directory can support the
following SQL commands:

• select - File attributes and content can be obtained from the proxy
table using the select command. Built-in functions that are
designed to handle text values are fully supported for the content
column. (i.e. textptr, textvalid, patindex, pattern).

• insert - A new file or files can be created using the insert command.
The only column values that have meaning are filename and
content; the rest of the columns should be left out of the insert

statement. If they are not left out, they are ignored.

• delete - files may be removed by the use of the delete command.

• update - Only the name of a file may be changed using the update

command;

• readtext - the contents of a file may be retrieved using the readtext

command;

• writetext - the contents of a file may be modified using the writetext

command;

No other SQL commands will operate on tables of this type.

size int for regular files, specifies the number of bytes in
the file. For block special or character special,
this is not defined.

filetype varchar(4) the file type - legal values are: FIFO, for pipe
files; DIR for directories; CHRS for character
special files; BLKS for block special files; REG
for ordinary files; UNKN for all other file types.
Links are automatically expanded, and will not
appear as a separate file type.

access char(10) access permissions, presented in a more or less
’standard’ Unix format: "drwxrwxrwx"

uid varchar(n) The name of the file owner. The value of n is
specified by the system definition L_cuserid,
which is 9 on all systems except Compaq Tru64,
where it is 64.

gid varchar(n) The name of the owning group. The value of n
is specified by the system definition L_cuserid,
which is 9 on all systems except Compaq Tru64,
where it is 64.

atime datetime Date/time file data was last accessed

mtime datetime Date/time when file was last modified

ctime datetime Date/time when file status was last changed

content image The actual physical content of the file.

Column
 Name Datatype Description

9-188 Component Integration Services

File System Access Adaptive Server version 12.5 Beta

Regular file content is available only if the Adaptive Server process
has sufficient privileges to access and read the file, and if the file type
indicates an ’ordinary file.’ In all other cases, the content column will
be null. For example:

select filename, size, content
from directory_table
where filename like ‘%html’

returns the name, size and content of regular files with a suffix of
’.html’, if the Adaptive Server process has access privileges to the file.
Otherwise, the content column will be NULL.

The create proxy_table command fails if the pathname referenced by
directory pathname is not a directory, or is not searchable by the
Adaptive Server process.

If traceflag 11206 is turned ON, then messages are written to the
errorlog that contain information about the contents of the
directories and the query processing steps needed to obtain that
information.

Recursion through Subordinate Directories

If the "pathname" specified in the create proxy_table statement contains
the ;R extension, CIS traverses all directories subordinate to
pathname, returning information for the contents of each
subordinate directory. When this is done, the filename returned by a
query contains the complete name of the file relative to the
pathname. In other words, all subordinate directory names appear
in the filename. For example, if pathname species "/work;R":

create proxy_table d1 external directory at "/work;R"
select filename, filetype from d1

returns values for files in subordinate directories as follows:

Table 9-2: Values for Files

Filename Filetype

dir1 DIR

dir1/file1.c REG

dir1/file2.c REG

dir2 DIR

dir2/file1.c REG

New Features for Adaptive Server Version 12.5 9-189

Adaptive Server version 12.5 Beta File System Access

File Access

Another new class of proxy tables are allowed in the 12.5 release that
enables SQL access to individual files within a file system. The
supported syntax is:

create proxy_table <table_name
external file at " pathname"

When this command is used, a proxy table with one column (named ’record’, type varchar(255)) will be created. It is
assumed in this case that the contents of the file are readable characters, and individual records within the file are
separated by the newline (\n) character.

It is also possible to specify your own column names and datatypes, using thecreate [existing] table command:
create existing table fname (

column1 int null,
column2 datetime null,
column3 varchar(1024) null
etc. etc.

) external file at "pathname"

Columns may be any datatype except text, image, or a Java ADT.
The use of the existing keyword is optional, and has no effect on the
processing of the statement. In all cases (create table , create existing table ,
create proxy_table), if the file referenced by pathname does not exist, it
is created. If it does exist, its contents are not overwritten.

When a proxy table is mapped to a file, some assumptions about the
file and its contents are made:

1. The file is a regular file (i.e. not a directory, block special, or
character special file);

2. The Adaptive Server server process has at least read access to the
file. If the file is to be created, the server process must have write
access to the directory in which the file is to be created;

3. The contents of an existing file are in human-readable form;

4. Records within the file are delimited by a newline character;

5. The maximum supported record size is 32767 bytes;

6. Individual columns, except for the last one, are delimited by a
single tab character;

7. There is a correspondence between tab-delimited values within
each record of the file and the columns within the proxy table.

With proxy tables mapped to files, it is possible to:

1. Back-up database tables to the file system using either select/into

or insert/select . When an insert statement is processed, each
column is converted to characters in the default character set of

9-190 Component Integration Services

File System Access Adaptive Server version 12.5 Beta

the server. The results of the conversion are buffered, and all
columns (except for the last) are delimited by a single tab. The
last column is terminated by a newline. The buffer is then
written to the file, representing a single row of data.

2. Provide a SQL alternative to using bcp in and bcp out . The use of a
select/into statement can easily back-up a table to a file, or copy a
file’s contents into a table.

3. Query file content with the select statement, qualifying rows as
needed with search arguments or functions. For example, it is
possible to read the individual records within the Adaptive
Server errorlog file:

create proxy_table errorlog
external file at
"/usr/sybase/ase12_5/install/errorlog"
select record from errorlog where record like
"%server%"

The query will return all rows from the file that match the like pattern.
If the rows are longer than 255 bytes, they will be truncated. It is
possible to specify longer rows:

create existing table errorlog
(
record varchar(512) null
)
external file at
"/usr/Sybase/ase12_0/install/errorlog"

In this case, records up to 512 bytes in length will be returned. Again,
since the proxy table contains only one column, the actual length of
each column will be determined by the presence of a newline
character.

Only the select and insert data access statements are supported for file
access. update , delete and truncate will result in errors if the file proxy is
the target of these commands.

Important: When an insert statement is processed, the file contents are
overwritten. There is no ability to append contents to the end of a file
with the insert statement.

Traceflag 11206 is also used to log message to the errorlog. These
messages contain information about the stages of query processing
that are involved with file access.

New Features for Adaptive Server Version 12.5 9-191

Adaptive Server version 12.5 Beta Enhanced Mapping of External Logins

Enhanced Mapping of External Logins

Users of Adaptive Server that invoke CIS, knowingly or
unknowingly, will require login names/passwords to remote
servers. By default, the username/password pair used by CIS to
connect to a remote server will be the same username/password
used by the client to connect to Adaptive Server.

This default mapping is frequently insufficient, and since its first
release CIS has supported a one-to-one mapping of Adaptive Server
login names and passwords to remote server login names and
passwords. For example, using the stored procedure
sp_addexternlogin , it is possible to map Adaptive Server user steve,
password sybase to DB2 login name login1, password password1:

sp_addexternlogin DB2, steve, login1, password1

In the 12.5 release, it is possible to provide a many-to-one mapping
so that all Adaptive Server users who need a connection to DB2 can
be assigned the same name and password:

sp_addexternlogin DB2, NULL, login2, password2

One-to-one mapping has precedence, so that if user steve has an
external login for DB2, that would be used rather than the many-to-
one mapping.

In addition to this, it is possible to assign external logins to Adaptive
Server roles. With this capability, anyone with a particular role can
be assigned a corresponding login name/password for any given
remote server:

sp_addexternlogin DB2, null, login3, password3,
rolename

The use of the fifth argument to this procedure, containing the role
name, identifies the name of a role, rather than the name of a user.
Whenever a user with this role active requires a connection to DB2,
the appropriate login name/password for the role will be used to
establish the connection. When establishing a connection to a remote
server for a user that has more than one role active, each role is
searched for an external login mapping, and the first mapping found
is used to establish the login. This is the same order as displayed by
the stored procedure sp_activeroles .

The general syntax for sp_addexternlogin is:

9-192 Component Integration Services

Union in Views Adaptive Server version 12.5 Beta

sp_addexternlogin
<servername>,
<loginname>,
<external_loginname>,
<external_password>
[, <rolename>]

<rolename> is optional; if specified then the loginname parameter is
ignored.

Precedence for these capabilities are as follows:

• If one-to-one mapping is defined, it will be used - this has the
highest precedence.

• If no one-to-one mapping is defined, then if a role is active and a
mapping for it can be found, the role mapping will be used to
establish a remote connection;

• If neither of the above are true, then many-to-one mapping is
used if defined.

• If none of the above is true, then the Adaptive Server login name
and password are used to make the connection.

If role mapping is done, and a user’s role is changed (via set role), then
any connections made to remote servers that used role mapping is
disconnected. This cannot be done if a transaction is pending,
therefore the set role command is acceptable if a transaction is active
and remote connections are present that used role mapping.

The stored procedure sp_helpexternlogin has been updated to allow
viewing the various types of extern logins that have been added
using sp_addexternlogin . The syntax for sp_helpexternlogin is:

sp_helpexternlogin [<servername> [,<loginname>
[,<rolename>]]]

All three parameters are optional, and any of the parameters can be
NULL.

The stored procedure sp_dropexternlogin has also been modified to
accept a third argument, <rolename>. If <role name> is specified
then the second argument, <login name>, is ignored.

Union in Views

New syntax to support the inclusion of the union operator within a
view has been added to the 12.5 release. Note that the resulting view

New Features for Adaptive Server Version 12.5 9-193

Adaptive Server version 12.5 Beta New Limits for Adaptive Server version 12.5

is not updatable, meaning that insert , delete and update operations are
not allowed on views containing the union operator.

Component Integration Services supports union in views when proxy
tables are referenced on either side of the union operator by
forwarding as much syntax as possible to a remote site. This makes
it possible to create a ’virtual table’ consisting of separate tables in
Oracle and DB2, for example.

This feature is internal to Adaptive Server/CIS, and does not directly
affect remote servers. However, when a statement is executed
involving a view of this type, and all tables referenced by the view
reside on the same remote server, the previously defined union

capability will be examined to determine whether the union operator
can be sent to the remote server.

New Limits for Adaptive Server version 12.5

Limits on length of char, varchar, binary and varbinary datatypes - In
the 12.5 release as in prior releases of Adaptive Server, a row cannot
span page boundaries, therefore column size has been limited by
row size. However, in the 12.5 release of Adaptive Server,
configuration allows page sizes of 2k, 4k, 8k or 16k bytes. Also, the
arbitrary limit of 255 bytes for char/binary columns has been
removed. The 12.5 release supports extended sizes of char, varchar,
binary and varbinary data types. The new limit depends on the page
size of the server. For various page sizes, the new limits are as
follows:

Table 9-3: New Limits

Note that these sizes are still approximate. The basic rule specifies
that the limit will be the maximum size that still allows a single row
to fit on a page. These limits will also vary depending on the locking
scheme specified when the table is created. It is assumed that the
bulk of proxy tables will be created with the default locking scheme,
which is all page locking.

• Limits on length of Transact-SQL variables and parameters - the
size of char, varchar, binary and varbinary variables will be

Pagesize Max. Column Size

2048 1900

4096 4000

8192 8000

16384 16000

9-194 Component Integration Services

New Limits for Adaptive Server version 12.5 Adaptive Server version 12.5 Beta

extended to equal the maximum size of columns of the same
datatype for a given server. This will allow variables to be passed
to stored procedures (or RPCs) whose length exceeds the current
limit of 255 bytes.

• Limits on number of columns per table- the old limit of 250 will
be removed, and up to 1024 columns per table will be allowed, as
long as the columns can still fit on a page. Note that there is a
limit of 254 variable length columns (null columns are also
considered variable length).

• Limits on the width of an index - the total width of an index
within Adaptive Server can be larger than in prior releases,
depending on server page size. In the following table, maximum
index width is shown according to pagesize:

Table 9-4: Maximum Index Width

• Limits on the number of columns per index - the current limit of
31 columns per index will be unchanged in the Everest release.

What these changes mean to CIS and remote servers CIS connects to
is described in the following sections.

Remote Server Capabilities

When communicating with a remote server, CIS needs to know the
maximum length of a char/varchar column that can be supported by
the DBMS.

For connections to servers in classes Adaptive Servernterprise,
ASAnywhere, ASIQ, sql_server and db2, the maximum size is
determined based on known attributes of these servers (according to
version).

For servers in class direct_connect and sds, this information is
provided by an addition to the result set returned by the sp_capabilities

RPC. A new capability is specified to allow the Direct Connect to
indicate the maximum length of columns supported by the DBMS
for which the Direct Connect is configured.

Pagesize Index Width

2048 600

4096 1250

8192 2600

16384 5300

New Features for Adaptive Server Version 12.5 9-195

Adaptive Server version 12.5 Beta New Limits for Adaptive Server version 12.5

Additionally, it is necessary for the Direct Connect to know about the
maximum length of char columns that can be supported by CIS. For
this reason, changes to the existing RPC sp_thread_props are required:

sp_thread_props "maximum Adaptive Server column
length", n

This RPC is sent to a Direct Connect after CIS has established a
connection for the first time. The value of n will be an integer
indicating the maximum column size, in bytes, allowed by Adaptive
Server/CIS.

create new proxy table

The create table command allows columns of datatype char, varchar,
binary and varbinary to be specified with extended lengths, as
described above. These datatypes and lengths are forwarded to the
remote server on which the table is to be created.

create existing proxy table

The create existing table command also allows columns to be specified
with a length of greater than 255 bytes. This allows CIS to treat
columns in remote databases as char, varchar, binary or varbinary
that previously had to be treated as text or image columns.

There is still an opportunity for column size mismatch errors. For
example, in the case where the remote database contains a table with
a column length of 5000 bytes, and the Adaptive Server processing
the create existing table command only supports columns up to 1900
bytes, a size mismatch error would occur. In this case, it is necessary
to re-specify the column as a text or image column.

In the case where the proxy table column size exceeds that of the
corresponding column in the remote table, a size mismatch error is
detected and the command is aborted.

create proxy_table

The create proxy_table command imports metadata from a remote
server and converts column information into an internal create existing

table command, with a column list derived from the imported
metadata. When obtaining the column metadata, conversion from
the remote DBMS type to internal Adaptive Server types is required.

9-196 Component Integration Services

New Limits for Adaptive Server version 12.5 Adaptive Server version 12.5 Beta

If the size of remote columns (char, varchar, binary or varbinary
datatypes) exceeds 255 bytes but is still less than or equal to the
maximum Adaptive Server column size, then equivalent Adaptive
Server datatypes are used for the proxy table. However, if the size of
a remote column exceeds the column size supported by Adaptive
Server, then CIS will convert the corresponding proxy table column
to text or image (as is the case with the current in-market
implementation).

alter proxy table

If this command operates on a proxy table, it is first processed locally,
then forwarded to the remote server for execution. If the remote
execution fails, the local changes are backed out and the command is
aborted.

The remote server must processes the command appropriately, or
raise an error. If an error is produced, the CIS side of the command is
aborted and rolled back.

select, insert, delete, update

CIS handle large column values when proxy tables are involved in
DML operations. CIS handles DML using one of several strategies:

• TDS Language commands - if the entire SQL statement can be
forwarded to a remote server, then CIS does so using TDS
Language commands generated by Ct-Library - ct_command

(CS_LANG_CMD).

The text of the language buffer may contain data for long char or
binary columns that exceeds 255 bytes, and remote servers must
handle parsing of these command buffers.

• TDS Dynamic commands - if CIS cannot forward the entire SQL
statement to a remote server (i.e. CIS is forced to provide
functional compensation for the statement), then an insert , update

or delete may be handled by using TDS Dynamic commands, with
parameters as needed, using the Ct-Library function ct_dynamic

(CS_PREPARE_CMD, CS_EXECUTE_CMD,
CS_DEALLOC_CMD).

The parameters for the dynamic command may be
CS_LONGCHAR_TYPE or CS_LONGBINARY_TYPE.

New Features for Adaptive Server Version 12.5 9-197

Adaptive Server version 12.5 Beta LDAP Directory Services

• TDS Cursor commands - Ct-Library cursor operations can be
used to handle proxy table operations for select , update and delete if
functional compensation has to be performed. For example, if
updating a proxy table and there are multiple tables in the from

clause, CIS may have to fetch rows from multiple data sources,
and for each qualifying row, apply the update to the target table. In
this case, CIS uses ct_cursor ({CS_DECLARE_CMD,
CS_OPEN_CMD, CS_CURSOR_UPDATE_CMD,
CS_CLOSE_CMD, CS_DEALLOC_CMD}).

After a cursor is prepared, parameters are specified. These
parameters may now include those of type CS_LONGCHAR or
CS_LONGBINARY.

• Bulk insert commands - when performing a select/into operation, if
the target server supports the bulk interface (only true of remote
Adaptive Server’s), then the remote server must be prepared to
handle char/binary values > 255 (via CS_LONGCHAR,
CS_LONGBINARY values).

Columns from remote servers may be returned to CIS as type
CS_LONGCHAR_TYPE or CS_LONGBINARY_TYPE.

RPC Handling

RPCs sent to remote servers can contain parameters of types
CS_LONGCHAR and CS_LONGBINARY. The CIS command
cis_rpc_handling supports these new types.

Note that sending long parameters to pre-12.5 servers will not be
allowed, as prior versions of Adaptive Server do not support
CS_LONGCHAR or CS_LONGBINARY data. CIS examines TDS
capabilities for the remote server prior to sending the RPC, and if the
remote server cannot accept these datatypes, an error will be
produced.

LDAP Directory Services

The LDAP directory services means that it is no longer necessary to
use an interfaces file in both the client and the server. The 12.5 release
supports LDAP services for obtaining server information, and so
does Component Integration Services. When a connection to a
remote server is attempted, CIS instructs Open Client software to
reference either the interfaces file or an LDAP server.

9-198 Component Integration Services

Row-Level Access Control Adaptive Server version 12.5 Beta

CIS uses LDAP services only when the configuration file (libtcl.cfg)
specifies it.

Note: When an LDAP Server is specified in libtcl.cfg then server
information becomes accessible from the LDAP Server only and
Adaptive Server/CIS will ignore any (traditional) interfaces file.

Row-Level Access Control

CIS users can employ the features of row-level access control because
access rules can be bound to columns on proxy tables.

When queries against proxy tables are processed, the access rule is
added to the query tree during query normalization, thus making its
existence transparent to downstream query processing. Therefore,
CIS users can forward additional predicates to remote servers to
restrict the amount of data transferred, according to the expression
defined by the access rule.

CIS can function as an row-level access control hub to the entire
enterprise through the use of access rules bound to columns on
proxy tables.

New Features for Adaptive Server Version 12.5 10-199

10 Compressed Archive Support in
Adaptive Server 10.

This section describes the new compression feature in the dump
command.

Dumping databases and transaction logs using compress option

The dump command includes a compress option that allows you to
compress databases and transaction logs using Backup Server.

The partial syntax for dump database … compress and dump transaction …
compress commands is:

dump database database_name
to "compress::[compression_level ::] archive_name "
…[stripe on ::[compression_level ::] archive_name "] …

dump transaction database_name
to "compress::[compression_level ::] archive_name "
…[stripe on ::[compression_level ::] archive_name "]…

Where database_name is the database you are loading into, and
compress::compression_level is a number between 0 and 9, with 0
indicating no compression, and 9 providing the highest level of
compression. If you do not specify compression_level, the default is 6.
archive_name is the full path to the archive file of the database or
transaction log you are compressing. If you do not include a full path
for your dump file, Adaptive Server creates a dump file in the
directory in which you started Adaptive Server.

Use the stripe on clause to use multiple dump devices for a single
dump. See Chapter 27, “Backing Up and Restoring User Databases”
in the Adaptive Server Enterprise System Administration Guide for more
information about the stripe on clause.

➤ Note
The compress option works only with local archives; you cannot use the

servername option.

Example

dump database pubs2 to
"compress::4::/opt/bin/Sybase/dumps/dmp090100.dmp"

10-200 Compressed Archive Support in Adaptive Server

Dumping databases and transaction logs using compress option Adaptive Server version 12.5 Beta

Backup Server session id is: 9. Use this value when executing
the 'sp_volchanged' system stored procedure after fulfilling any
volume change request from the Backup Server.
Backup Server: 4.132.1.1: Attempting to open byte stream device:
'compress::4::/opt/bin/Sybase/dumps/dmp090100.dmp::00'
Backup Server: 6.28.1.1: Dumpfile name 'pubs2002580BD27 '
section number 1 mounted on byte stream
'compress::4::/opt/bin/Sybase/dumps/dmp090100.dmp::00'
Backup Server: 4.58.1.1: Database pubs2: 394 kilobytes DUMPed.
Backup Server: 4.58.1.1: Database pubs2: 614 kilobytes DUMPed.
Backup Server: 3.43.1.1: Dump phase number 1 completed.
Backup Server: 3.43.1.1: Dump phase number 2 completed.
Backup Server: 3.43.1.1: Dump phase number 3 completed.
Backup Server: 4.58.1.1: Database pubs2: 622 kilobytes DUMPed.
Backup Server: 3.42.1.1: DUMP is complete (database pubs2).

The compression_level must be a number between 0 and 9. The
compress option does not recognize numbers outside this range, and
treats them as part of the file name while it compresses your files
using the default compression level. For example, if you enter:

dump database pubs2 to “compress::99::pubs2.cmp”

the command creates a file called 99::pubs2.cmp, which is compressed
with the default compression level of 6.

In general, the higher the compression numbers, the smaller your
archives are compressed into. However, the compression result
depends on the actual content of your files.

Table 10-1 shows the compression levels for the pubs2 database.
These numbers are for reference only; the numbers for your site may
differ depending on OS level and configuration.

Table 10-1: Compression levels and compressed file sizes for pubs2

Compression level Compressed file size

No compression/Level 0 630Kb

Level 1 128Kb

Level 2 124Kb

Level 3 121Kb

Level 4 116Kb

Level 5 113Kb

Level 6/default 112Kb

Level 7 111Kb

New Features for Adaptive Server Version 12.5 10-201

Adaptive Server version 12.5 Beta Loading databases and transaction logs dumped with compress option

The higher the compression level, the more CPU-intensive the
process is.

For example, you may not want to use a level-9 compression when
archiving your files. Instead, consider the trade-off between
processing effort and archive size. The default compression level (6)
provides optimal CPU usage, producing an archive that is 60% to
80% smaller than a regular uncompressed archive. Sybase
recommends that you initially use the default compression level,
then increase or decrease the level based on your performance
requirements.

For complete information about dump database and dump transaction, see
the Adaptive Server Enterprise Reference Manual.

Loading databases and transaction logs dumped with compress option

If you use dump ... compress to dump a database or transaction log, you
must load this dump using the load ... compress option.

The partial syntax for load database .. compress and load transaction ..
compress is:

load database database_name
from "compress:: archive_name "
…[stripe on "compress:: archive_name "]…

load transaction database_name
from "compress:: archive_name "
…[stripe on "compress:: archive_name "]…

Where database_name is the database you archived, and compress::
invokes the decompression of the archived database or transaction
log. archive_name is the full path to the archived database or
transaction log that you are loading. If you did not include a full path
when you created your dump file, Adaptive Server created a dump
file in the directory in which you started Adaptive Server.

Use the stripe on clause if you compressed the database or transaction
log using multiple dump. See Chapter 27, “Backing Up and

Level 8 110Kb

Level 9 109Kb

Table 10-1: Compression levels and compressed file sizes for pubs2 (continued)

Compression level Compressed file size

10-202 Compressed Archive Support in Adaptive Server

Loading databases and transaction logs dumped with compress option Adaptive Server version 12.5 Beta

Restoring User Databases” in the Adaptive Server Enterprise System
Administration Guide for more information about the stripe on clause.

➤ Note
Do not use the compression_level variable for the load command.

Example

load database pubs2 from
"compress::/opt/bin/Sybase/dumps/dmp090100.dmp"

Backup Server session id is: 19. Use this value when executing
the 'sp_volchanged' system stored procedure after fulfilling any
volume change request from the Backup Server.
Backup Server: 4.132.1.1: Attempting to open byte stream device:
'compress::/opt/bin/Sybase/dumps/dmp090100.dmp::00'
Backup Server: 6.28.1.1: Dumpfile name 'pubs2002620A951 '
section number 1 mounted on byte stream
'compress::/opt/bin/Sybase/dumps/dmp090100.dmp::00'
Backup Server: 4.58.1.1: Database pubs2: 1382 kilobytes LOADed.
Backup Server: 4.58.1.1: Database pubs2: 3078 kilobytes LOADed.
Backup Server: 4.58.1.1: Database pubs2: 3086 kilobytes LOADed.
Backup Server: 3.42.1.1: LOAD is complete (database pubs2).
Use the ONLINE DATABASE command to bring this database online;
SQL Server will not bring it online automatically.

For complete information about load database and load transaction, see
the Adaptive Server Enterprise Reference Manual.

New Features for Adaptive Server Version 12.5 11-203

11 System Table Changes 11.

This section lists changes to system tables.

Table 11-1 lists new column names, the tables they are in, their
datatype, and a brief description of what they are.

Table 11-2 lists column names in Adaptive Server version 12.5 that
have changed their status from previous versions.

Table 11-1: New columns for Adaptive Server version 12.5

Table name Column name Datatype Description

syscolumns accessrule intn Lets the table owner specify which rows the users can
access. See “Row-Level Access Locking“ for more
information.

sysconstraints spare1 tinyint Not for customer use.

syslogins procid int Stores the login trigger registered with the login script
option in sp_modifylogin.

sysprocesses loggedindatetime datetimn Shows the time and date when the client connected to
Adaptive Server. See “Row-Level Access Locking“ for
more information.

ipaddr varchar? IP address of the client where the login is made. See
“Row-Level Access Locking“ for more information.

sysservers srvcost intn Provides the network cost in milliseconds for accessing
a server over a network. Used only by the Adaptive
Server query optimizer for evaluating the cost of a
query when accessing a proxy table, the default is set to
1,000 ms.

systypes accessrule intn Lets the table owner specify which rows users can
access. See “Row-Level Access Locking“ for more
information.

Table 11-2: Changed status for existing columns

Table name Column name Old datatype New datatype

sysalternates altsuid smallint int

suid smallint int

11-204 System Table Changes

Adaptive Server version 12.5 Beta

syscolumns colid tinyint smallint

length tinyint int

syscomments colid tinyint smallint

colid2 tinyint smallint

sysconfigures status smallint int

sysconstraints colid tinyint smallint

syscurconfigs status smallint int

sysdatabases suid smallint int

sysloginroles srid smallint int

suid smallint int

syslogins suid smallint int

sysobjects uid smallint int

sysprocedures sequence smallint int

sysprocesses gid smallint int

suid smallint int

uid smallint int

sysprotects uid smallint int

sysqueryplans uid smallint int

sysreferences fokey1 ... 16 tinyint smallint

refkey1 ... 16 tinyint smallint

sysremotelogins suid smallint int

sysroles id smallint int

lrid smallint int

syssrvroles srid smallint int

systypes uid smallint int

systypes uid smallint int

length tinyint int

sysusermessages uid smallint int

Table 11-2: Changed status for existing columns (continued)

Table name Column name Old datatype New datatype

New Features for Adaptive Server Version 12.5 11-205

Adaptive Server version 12.5 Beta

Table 11-3 describes changes to the sysobjects table. See “sysobjects”
in the system tables chapter of the Adaptive Server Enterprise Reference
Manual for more information on the columns used in sysobjects.

sysusers gid smallint int

uid smallint int

suid smallint int

Table 11-3: Changes in the sysobjects table

Column
name Datatype Description

type char(2) F = SQLJ function

P = Transact-SQL or SQLJ procedure

sysstat2 int Decimal value: 33554432

Hex bit representation: 0x2000000

Object represents a SQLJ stored procedure

Table 11-2: Changed status for existing columns (continued)

Table name Column name Old datatype New datatype

11-206 System Table Changes

Adaptive Server version 12.5 Beta

New Features for Adaptive Server Version 12.5 12-207

12 Row-level Access Control 12.

Database owners and table owners can restrict access to a table’s data
rows by defining access rules and binding those rules to the table.
Access to data can be further controlled by setting application
contexts and creating login triggers.

These features can be grouped under the concept of row-level access
control (RLAC). RLAC enables the database owner or table owner to
control which rows within a table that users can access based on the
their identification or profile and the privileges the user has from the
application level. Adaptive Server enforces RLAC for all data
manipulation languages (DMLs), which prevents users from
bypassing the access control to get to the data.

These concepts are discussed in this chapter:

• Access rules 12-207

• Application contexts 12-213

• Login triggers and scripts 12-219

• Example scenario of row-level access control 12-220

Access rules

Domain rules let table owners control the values that users can enter
into a particular column that is using a base datatype or any column
that is using a user-defined datatype. Rules are enforced during
inserts and updates.

Adaptive Server 12.5 enables row-level protection through access
rules. Access rules are enforced on select, update, and delete operations.
Adaptive Server enforces the access rules on all columns that are
read in a query, even if the columns are not included in the select list.
In other words, for a given query, Adaptive Server enforces the
domain rule on the table that is updated and the access rule on the
tables that are read.

Using access rules is similar to using views or an ad hoc query with
specific where clauses, and does not cause performance degradation.
The query is compiled and optimized after the access rules are
attached. Therefore, if there are indexes on the columns that have
access rules, the queries may perform better.

New Features for Adaptive Server Version 12.5 12-208

Adaptive Server version 12.5 Beta Access rules

Syntax for access rules

The access option has been added to the create rule syntax to allow
creation of access rules. For example, a table owner creates and
populates table T (username char(30), title char(20), classified_data
char(1024):

AA, "Administrative Assistant","Memo to President"
AA, "Administrative Assistant","Tracking Stock Movements"
VP1, "Vice President", "Meeting Schedule"
VP2, "Vice President", "Meeting Schedule"

The table owner creates a default and a domain rule on the username
column. The domain rule ensures that the column is updated with
correct values. If the default and domain rule are not created, there is
a potential security problem in which the user can insert a row into
the table with arbitrary data that will not be qualified by the access
rule.

The table owner then creates an access rule and binds it to the
username column using sp_bindrule.

create default uname_default
as suser_name()
go

sp_bindefault uname_default, "T.username"
go

*/
create accessrule uname_acc_rule
as @username = suser_name()
go

sp_bindrule uname_acc_rule, "T.username"
go

Now, when users issue this query:

select * from T

Adaptive Server processes the access rule that is bound to the
username column on T and attaches it to the query tree. The tree is
then optimized and an execution plan is generated and executed as if
the user had executed the query with the filter clause given in the
access rule. In other words, Adaptive Server attaches the access rule
and executes the query as:

select * from T where T.username = suser_name().

The result of an Administrative Assistant executing the select query
is:

New Features for Adaptive Server Version 12.5 12-209

Adaptive Server version 12.5 Beta Access rules

AA, "Administrative Assistant","Memo to President"
AA, "Administrative Assistant","Tracking Stock Movements"

The “where T.username = suser_name()” part of the query is
enforced by the server. The user cannot bypass the access rule.

Extended access rule syntax

Each access rule is bound to one column. To handle evaluation of
multiple access rules, there is an extended syntax:

create and access rule rule_name

create or access rule rule_name

Access rules using Java function and application contexts

The application developer can write flexible access rules using Java
and application contexts, described in “Access rules using Java
user-defined functions” on page 12-210 and “Application contexts”
on page 12-213. For example, you can write a rule that is hierarchical.
If table T contains all the employees’ schedules, then the President
can see all employees’ schedules. Each VP can see their own
schedules and their direct reports’ work schedules, but not the
President’s schedule.

Access rules can be bound to a user-defined datatype defined
through sp_addtype. Adaptive Server enforces the access rule on user
tables that use these user-defined datatypes. This relieves the
database owner and table owner from the task of binding access
rules to columns in their normalized schema. For example, there can
be a user-defined datatype named username for which the base type
is varchar(30). The database owner or table owner can create an
access rule and bind it to the username datatype. The owners can then
use the username datatype in any tables that their application will
use. Adaptive Server enforces the access rule on the tables that have
columns of the username datatype.

Example scenarios

For this example, assume there is one domain rule for the region
column and an access rule for the custid column, which is not used in
this query. For updates, customer_table is read, and then updated.
Adaptive Server enforces the access rule while reading customer_table

New Features for Adaptive Server Version 12.5 12-210

Adaptive Server version 12.5 Beta Access rules

on custid column, and, after updating, enforces the domain rule on
the region column.

update customer_table
set region = `northwest'
where region = `north'

In this next example, assume there are domain rules on orders_table
and access rules on old_orders_table. Adaptive Server enforces the
domain rule on orders_table because orders_table is updated, and the
access rule on the old_orders_table because old_orders_table is read.

insert into orders_table
select *

from old_orders_table

Access rules using Java user-defined functions

Access rules can use user-defined functions written in Java that use
JDBC to look up data in additional tables. Using Java functions, you
can, for example, write sophisticated rules that use the profile of the
application, the user logged in to use the application, and the roles
that the user currently has for the application.

The following Java class uses GetSecVal method to demonstrate how
you can use Java methods as user-defined functions inside access
rules.

import java.sql.*;
import java.util.*;

public class sec_class {
static String _url = "jdbc:sybase:asejdbc";
public static int GetSecVal(int c1)
{
try
{
PreparedStatement pstmt;
ResultSet rs = null;
Connection con = null;
int pno_val;

pstmt = null;

Class.forName("sybase.asejdbc.ASEDriver");
con = DriverManager.getConnection(_url);

if (con == null)
{
return (-1);

New Features for Adaptive Server Version 12.5 12-211

Adaptive Server version 12.5 Beta Access rules

}

pstmt = con.prepareStatement("select classification from sec_tab where
id = ?");

if (pstmt == null)
{
return (-1);
}

pstmt.setInt(1, c1);

rs = pstmt.executeQuery();

rs.next();

pno_val = rs.getInt(1);

rs.close();

pstmt.close();

con.close();

return (pno_val);

}
catch (SQLException sqe)
{
return(sqe.getErrorCode());
}
catch (ClassNotFoundException e)
{

System.out.println("Unexpected exception : " + e.toString());
System.out.println("\nThis error usually indicates that " + "your Java
CLASSPATH environment has not been set properly.");
e.printStackTrace();
return (-1);
}
catch (Exception e)
{
System.out.println("Unexpected exception : " + e.toString());
e.printStackTrace();
return (-1);
}
}
}

(from Shell)
javac sec_class.java

New Features for Adaptive Server Version 12.5 12-212

Adaptive Server version 12.5 Beta Access rules

jar cufo sec_class. jar sec_class.class
installjava -Usa -Password -f/work/work/FGAC/sec_class.jar -
-D testdb

(from isql)

create table sec_tab (id int, classification int)
go
insert into sec_tab values (1,10)
insert into sec_tab values (2,9)
insert into sec_tab values (3,7)
insert into sec_tab values (4,7)
insert into sec_tab values (5,4)
insert into sec_tab values (6,4)
insert into sec_tab values (7,4)
go

sp_addtype class_level, int
go

create table sec_data (c1 varchar(30),
c2 varchar(30),
c3 varchar(30),
clevel class_level)
go

declare @v1 int
select @v1 = 5
while @v1 > 0
begin
insert into sec_data values('8', 'aaaaaaaaaa', 'aaaaaaaaaa', 8)
insert into sec_data values('7', 'aaaaaaaaaa', 'aaaaaaaaaa', 7)
insert into sec_data values('5', 'aaaaaaaaaa', 'aaaaaaaaaa', 5)
insert into sec_data values('5', 'aaaaaaaaaa', 'aaaaaaaaaa', 5)
insert into sec_data values('2', 'aaaaaaaaaa', 'aaaaaaaaaa', 2)
insert into sec_data values('3', 'aaaaaaaaaa', 'aaaaaaaaaa', 3)
select @v1 = @v1 -1
end
go

create access rule clevel as
@clevel <= sec_class.GetSecVal(suser_id())
go

create default clevel_def as sec_class.GetSecVal(suser_id())
go

sp_bindefault clevel_def, class_level

New Features for Adaptive Server Version 12.5 12-213

Adaptive Server version 12.5 Beta Application contexts

go

sp_bindrule clevel, class_level
go

grant all on sec_data to public
go

grant all on sec_tab to public
go

Application contexts

Applications on a database server should be programmed to limit
access to the data based on their users and user profiles.

The application developer is responsible for coding the application
appropriately. For example, a human resources application is
programmed to know which users are allowed to update salary
information.

Application contexts allow users to define, store, and retrieve
profiles of the user—the roles they are authorized to use and groups
to which he or she belongs—and the application currently used by
the user. Application contexts can be used to store and retrieve
arbitrary client data, and can use Adaptive Server to store client
information.

Application contexts are specific to a session. They are not persistent
across sessions; however, they are available across nested levels of
statement execution, unlike local variables.

An application context consists of a context name, an attribute name,
and an attribute value. Users define the context name and the
attributes and values for each context. Sybase provides a variety of
attributes in the system application context, sys_sessions. For details,
see “sys_session system application context” on page 12-218. You
can also create your own application contexts as described in
“Creating and maintaining application contexts” on page 12-214.

Setting permissions for using application context functions

Application contexts are set, retrieved, and removed using functions.
Therefore, any user who is logged in can reset the profiles of the
session. Although execution of a function is audited, security may be
compromised before the problem is noticed. You can restrict access to
functions using grant and revoke privileges. Only the application

New Features for Adaptive Server Version 12.5 12-214

Adaptive Server version 12.5 Beta Application contexts

context functions perform data access control checks on the user.
Granting or revoking privileges for other functions does not have
any effect in Adaptive Server.

Application context function execution is treated as a select DML. The
owner of the function is the System Administrator of the server. Only
users with sa_role can grant or revoke privileges on the functions.
Only the select privilege is checked as part of server-enforced data
access control checks done by the functions. By default, privileges on
the functions are revoked to PUBLIC. This matches current defaults
for table-level privileges.

You can grant and revoke privileges to users, roles, and groups in a
given database for objects in that database. The only exceptions are
create database, set session authorization, and connect. A user granted these
privileges should be a valid user in the master database. For other
privileges, the user should be valid in the database where the object
is located.

However, functions do not have an object ID and they do not have a
home database. Therefore, in each database, the database owner
must grant to the appropriate user the select privilege for the
functions. Adaptive Server finds the user's default database and
checks the permissions against this database. With this approach,
only the owner of the users' default database needs to grant the select
privilege. If other databases should be restricted, the database owner
of those databases must explicitly revoke permission for the user in
those databases.

A System Administrator can execute the following commands to
grant or revoke select privileges on specific application context
functions:

grant select on set_appcontext to user_role

grant select on set_appcontext to joe_user

revoke select on set_appcontext from joe_user

Creating and maintaining application contexts

The following functions are available for creating and maintaining
application contexts:

• set_appcontext

• get_appcontext

• list_appcontext

New Features for Adaptive Server Version 12.5 12-215

Adaptive Server version 12.5 Beta Application contexts

• rm_appcontext

set_appcontext

set_appcontext is used to set a context name, attribute name, and
attribute value for the user session. The options are:

set_appcontext (“context_name”, “attribute_name”,
“attribute_value”)

Where context_name, attribute_name have datatypes of char(30) and
attribute_value has a datatype of char(2048). This function returns 0
for success and -1 for failure. set_appcontext cannot override values of
an existing application context. If you want to assign new values to a
context, remove the context, then re-create it with the new values. If
the values being set already exist in the session, the function returns
-1. Attributes are saved as char datatype. If the rule must use the
attribute value to compare against other datatypes, the rule should
convert the char data to the appropriate datatype.

Examples

1. select set_appcontext("CONTEXT1","ATTR1", "VALUE1")

0

This example creates an application context named CONTEXT1.
The attribute is named ATTR1 with a value of VALUE1.

2. select set_appcontext("CONTEXT1", "ATTR2",
convert(char(20), @numericvar)

0

This example shows set_appcontext with a datatype conversion
included in the value.

3. select set_appcontext("CONTEXT1", "ATTR1",
"VALUE1")

-1

This example shows the result of attempting to override an
existing application context. This context was created in example
1. The context must be removed, then recreated with the new
values.

4. select set_appcontext("CONTEXT1", "ATTR2",
"VALUE1")

New Features for Adaptive Server Version 12.5 12-216

Adaptive Server version 12.5 Beta Application contexts

Select permission denied on function
set_appcontext, database dbid

This example shows the result of a user without appropriate
permissions attempting to set the application context.

get_appcontext

get_appcontext returns the value of the attribute in a given context. The
options are:

get_appcontext (“context_name”, “attribute_name”)

Where context_name, attribute_name have datatypes of char(30). If the
attribute does not exist in the application context, get_appcontext
returns null. The attribute value is returned as a char datatype. If the
rule must use the attribute value to compare against other datatypes,
then the rule should convert the char data to the appropriate
datatype.

Examples

1. select get_appcontext("CONTEXT1,"ATTR1")

VALUE1

This example shows a return of VALUE1 for the value of ATTR1.

2. select get_appcontext("CONTEXT2", "ATTR1")

NULL

ATTR1 does not exist in CONTEXT2.

3. select get_appcontext("CONTEXT1","ATTR2","VALUE1")

Select permission denied on built-in
get_appcontext, database dbid

-1

This example shows the result of a user, without appropriate
permissions, attempting to get the application context.

list_appcontext

list_appcontext returns all the attributes in all the contexts for the
current session. The option is:

list_appcontex (“context_name”)

New Features for Adaptive Server Version 12.5 12-217

Adaptive Server version 12.5 Beta Application contexts

Where context_name has a datatype of char(30). It returns 0 for
success or -1 for failure. Since the function cannot return multiple
result sets, the results are printed in the same way that show plan
prints the plan using ex_callprint. The client receives these as messages
against a result set.

Examples

1. select list_appcontext([context_name])

Context Name: (CONTEXT1)
Attribute Name: (ATTR1) Value: (VALUE1)
Attribute Name: (ATTR2) Value: (VALUE2)
Context Name: (CONTEXT2)
Attribute Name: (ATTR1) Value: (VALUE1)

2. select list_appcontext()

Select permission denied on built-in
list_appcontext, database DBID

-1

This example shows the result of a user without appropriate
permissions attempting to list the application contexts.

rm_appcontext

rm_appcontext removes a specific application context, or all application
contexts. If the removal is successful, the function returns 0. If not, it
returns -1. The options are:

rm_appcontext (“context_name”, “attribute_name”)

Where context_name and attribute_name have datatypes of char(30).

Examples

1. select rm_appcontext("Context1","*")

0

2. select rm_appcontext("*","*")

0

3. select rm_appcontext("CONTEXT1", "ATTR1")

0

New Features for Adaptive Server Version 12.5 12-218

Adaptive Server version 12.5 Beta Application contexts

4. select rm_appcontext("NON_EXISTING_CTX", "ATTR")

-1

5. select rm_appcontext("CONTEXT1","ATTR2")

Select permission denied on built-in
get_appcontext, database dbid

-1

This example shows the result of a user without appropriate
permissions attempting to remove the application contexts.

sys_session system application context

sys_session is a system application context function. It is predefined
and cannot be modified using set_appcontext. It returns the following
values:

Table 12-1: sys_session attributes and values

Attribute Value

username login name

hostname host name the client has connected from

applname Name of the application as set by the client

session_userid User ID of the user in the current database

session_groupid Group ID of the user in the current database

current_userid User ID (after setting setuser)

current_groupid Group ID (after setting setuser)

current_dbid ID of the current database the user is in

current_dbname Name of the current database the user is in

spid Server process ID

proxy_name Proxy name set using the set session authorization
or set proxy commands

proxy_suserid The server user id of the proxy

clientname Client name set by the middle-tier application,
using the set clientname command

clientapplname Client application name set by the middle-tier
application, using the set clientapplname command

New Features for Adaptive Server Version 12.5 12-219

Adaptive Server version 12.5 Beta Login triggers and scripts

Login triggers and scripts

A login trigger is useful for setting the application context for the
user who is logged in. The login trigger is a stored procedure that is
fired as the last step in the login process.

The System Security Officer, System Administrator or database
administrator can register a login trigger to users in the server. Users
can register a login trigger with their own login.

The login trigger can be registered through sp_modifylogin. The syntax
is:

sp_modifylogin " login name ", "login script",
" sproc_name "

Run this procedure from the user's default database. The login
trigger should be available in this default database. Adaptive Server
searches the sysobjects table in the user's default database to find the

clienthostname Client hostname set by the middle-tier
application, using the set clienthostname command

language Current language the client is using by default or
after using the set language command
(@@language)

character_set Character set the client is using (@@client_csname)

lasterror Error code returned by the last statement executed
(@@error)

rowcount Rowcount set by set rowcount command
(@@rowcount)

servername Name of the server (@@servername)

transaction_count @@trancount

nesting_level @@nestlevel

dateformat Date format expected by the client, set using the
set dateformat command

roles Currently enabled roles

is_showplan_on Returns YES if set showplan is on, NO if it is off

is_noexec_on Returns YES if set noexec is on, NO if it is off

is_ansi_null_on Returns YES if set ansinull is on, NO if it is off

Table 12-1: sys_session attributes and values

Attribute Value

New Features for Adaptive Server Version 12.5 12-220

Adaptive Server version 12.5 Beta Example scenario of row-level access control

login trigger object. If there are any errors executing the login trigger,
they are printed in the server error log. Adaptive Server executes the
login trigger as a background task. Only the database administrator
and the user can use the login script option in sp_modifylogin.

To provide a secure environment, the database administrator should:

1. Revoke select privilege on the set_appcontext function.

2. Create a login trigger and register the login trigger to the user.

3. Provide execute privilege to the login trigger to be executed by a
user.

The login trigger should look up a table that has the application
names, the users using these applications in the server, and their
appropriate contexts, then set the context attribute values
accordingly.

All rules should do either or both of the following:

• Use the application context environment for the user profile.

• Use the Java functions or any other server functions that are
read-only.

Example scenario of row-level access control

This section describes an example scenario of row-level access
control.

This example assumes that a company has one department with a
director, two managers managing two groups in the department,
and two engineers working for each of the two managers. The
example creates access rules such that when the department director
logs in and queries the HR table, she can see her own record and all
the records of her direct reports and their direct reports. Similarly,
when the managers log in they can see their own records and those
of the engineers reporting to them.

The hr_emp table is created as follows:

New Features for Adaptive Server Version 12.5 12-221

Adaptive Server version 12.5 Beta Example scenario of row-level access control

/*
** Employee table
*/
create table hr_emp
(u_empid int,
u_name varchar(30),
u_title varchar(30),
u_mgrname varchar(30),
u_dept varchar(30),
)

insert dst_emp values (suser_id("Director"), "D1",
"Director","The Boss", "DST")
insert dst_emp values (suser_id("Manager1"), "M1",
"Manager-1","D1", "QP1")
insert dst_emp values (suser_id("Engineer11"), "E11", "Emp1.1",
"M1","QP1")
insert dst_emp values (suser_id("Manager2"), "M2",
"Manager-2","D1", "QP2")
insert dst_emp values (suser_id("Engineer21"), "E21", "Emp2.1",
"M2","QP2")

The following profile is defined for the director, managers, and
engineers.

The profile is populated in app_context_tbl in hr_db.

Table 12-2: Context names and attributes for the sample application

User Context Attribute Value

Director DST DEPT ALL

Director DST EMPID ALL

Manager1 DST DEPT QP1

Manager1 DST EMPID ALL

Engineer11 DST DEPT QP1

Engineer11 DST EMPID E11

Manager2 DST DEPT QP2

Manager2 DST EMPID ALL

Engineer21 DST DEPT QP2

Engineer21 DST EMPID E12

New Features for Adaptive Server Version 12.5 12-222

Adaptive Server version 12.5 Beta Example scenario of row-level access control

create table app_context_tbl (u_name varchar(30), appname
varchar(30), attr varchar(30), value varchar(30))
go

/* director */
insert app_context_tbl values ("Director","DST","DEPT","All")
insert app_context_tbl values ("Director","DST","EMPID","All")
go

/* manager group 1*/
insert app_context_tbl values ("Manager1","DST","DEPT","QP1")
insert app_context_tbl values ("Manager1","DST","EMPID","All")
go

/* engineer group 1 */
insert app_context_tbl values ("Engineer11","DST","DEPT","QP1")
go

/* manager group 2 */
insert app_context_tbl values ("Manager2","DST","DEPT","QP2")
insert app_context_tbl values ("Manager2","DST","EMPID","All")
go

/* engineer group 2 */
insert app_context_tbl values ("Engineer21","DST","DEPT","QP2")
go

The following stored procedure is registered as the login trigger for
each user. The procedure is owned by the System Administrator
because the default privilege on set_appcontext has been revoked for
all other users.

create proc loginproc
as

declare @appname varchar(20)
declare @attr varchar(20)
declare @value varchar(20)
declare @retval int
declare apctx cursor for

select appname, attr, value
from hr_db.dbo.app_context_tbl
where u_name = suser_name()

open apctx
fetch apctx into @appname, @attr, @value

while (@@sqlstatus = 0)

begin
select @retval = set_appcontext(rtrim(@appname),

rtrim(@attr), rtrim(@value))

New Features for Adaptive Server Version 12.5 12-223

Adaptive Server version 12.5 Beta Example scenario of row-level access control

fetch apctx into @appname, @attr, @value
end
go

grant execute on loginproc to public
go

/* make sure we are in the user's default database */
use hr_db
go

sp_modifylogin "Director", "login script", "loginproc"
go

sp_modifylogin "Manager1","login script","loginproc"
go

sp_modifylogin "Manager2","login script","loginproc"
go

sp_modifylogin "Engineer11","login script","loginproc"
go

sp_modifylogin "Engineer21", "login script", "loginproc"
go

To create the access rules and bind them to the hr_emp table columns.

/*
** Ind.contributor should satisfy the following conditions
** (1) Empid should match
** (2) Department should match
**
** Manager should satisfy the following conditions
** (1) Department should match
**
** No conditions for Director
*/
create access rule emp_access
as
@empid = suser_id() or get_appcontext("DST", "EMPID") = "All"
go

New Features for Adaptive Server Version 12.5 12-224

Adaptive Server version 12.5 Beta Example scenario of row-level access control

sp_bindrule emp_access, "hr_emp.u_empid"
go
create access rule dept_access
as
@deptid = get_appcontext("DST", "DEPT") or
get_appcontext("DST","DEPT") = "All"
go
sp_bindrule dept_access, "hr_emp.u_dept"
go

Adaptive Server can now enforce the access rules and return rows
that satisfy the access rules when users log in and query the hr_emp
table.

isql -UEngineer11 -P password
1> select * from hr_emp
2> go

u_empid u_name u_title u_mgrname
u_dept
----------- -------------- -------- --------------

6 E11 Emp1.1 Manager1
QP1

isql -UManager2 -P password
1>select * from hr_emp
2>go

u_empid u_name u_title u_mgrname
u_dept
----------- -------------- -------- --------------

6 M2 Manager-2 D1 DST
7 E21 Emp2.1 Manager2 QP1

isql -UDirector -P password
1>select * from hr_emp
2>go

u_empid u_name u_title u_mgrname
u_dept
----------- -------------- -------- --------------

3 D1 Director The Boss DST
4 M1 Manager-1 D1 QP1
5 M2 Manager-2 D1 QP2
6 E11 Emp1.1 Manager1 QP1
7 E12 Emp1.2 Manager2 QP2

New Features for Adaptive Server Version 12.5 13-225

13 New Features in Open
Client/Open Server 12.5 13.

This section describes the new features of Open Client/Open Server
version 12.5.

• unichar16 – a user-defined format that stores Unicode-encoded
characters in two-byte format.

• New limits that support wider tables, and larger page sizes.

• Implicit Cursors – an optimized use of the Client Library fetch
row command.

To enable any of these features, the cs_context structure must be set
with version CS_VERSION_125, using cs_ctx_alloc.

retcode = cs_ctx_alloc (CS_VERSION_125, context);
The version parameter specifies which features are
enabled.

Table 13-1: cs_cxt_alloc parameters

unichar datatype

Open Client/Open Server 12.5 unichar supports two-byte characters,
supporting multilingual client applications, and reducing the
overhead associated with character-set conversions.

Designed the same as the Open Client/Open Server CS_CHAR
datatype, CS_UNICHAR is a shared, C-programming datatype that
can be used anywhere the CS_CHAR datatype is used. The
CS_UNICHAR datatype stores character data in Unicode UCS
Transformational Format 16-bit (UTF-16), which is two-byte
characters.

The Open Client/Open Server CS_UNICHAR datatype corresponds
to the Adaptive Server 12.5 UNICHAR fixed-width and

Value of version Indicates Features

CS_VERSION_110 11.1 behavior Unicode character set support.
Use of external configuration files to control Client Library
property settings.

CS_VERSION_120 12.0 behavior High-availability failover functionality.
Bulk row inserts.
New SORTMERGE property.

CS_VERSION_125 12.5 behavior Two-byte UTF-16 encoded character support.
Extended page size and column size support.
Implicit cursors for high performance single-row fetches.

13-226 New Features in Open Client/Open Server 12.5

unichar datatype Adaptive Server version 12.5 Beta

UNIVARCHAR variable-width datatypes, which store two-byte
characters in the Adaptive Server database.

As a standalone, Open Client 12.5 applications can use this new
functionality to convert other datatypes to and from CS_UNICHAR
at the client site, even if the server does not have the capability to
process two-byte characters.

New datatypes and capabilities

To send and receive two-byte characters, the client specifies its
preferred byte order during the login phase of the connection. Any
necessary byte swapping is performed on the server site.

The Open Client ct_capability() parameters:

• CS_DATA_UCHAR – is a request sent to the server to determine
whether the server supports two-byte characters.

• CS_DATA_NOUCHAR – is a parameter sent from the client to
tell the server not to support unichar for this specific connection.

To access two-byte character data, Open Client/Open Server
implements:

• CS_UNICHAR– a datatype.

• CS_UNICHAR_TYPE – a datatype constant to identify the data’s
datatype.

Setting the CS_DATAFMT parameter’s datatype to
CS_UNICHAR_TYPE allows you to use existing API calls, such as
ct_bind, ct_describe, ct_param, and so on.

CS_UNICHAR uses the format bitmask field of CS_DATAFMT to
describe the destination format.

For example, in the Client Library sample program, rpc.c, the
BuildRpcCommand() function contains the section of code that describes
the datatype:

...
strcpy (datafmt.name, “@charparam”);
datafmt.namelen =CS_NULLTERM;
datafmt.datatype = CS_CHAR_TYPE;
datafmt.maxlength = CS_MAX_CHAR;
datafmt.locale = NULL;
...

In this example, the character type is defined as datafmt.datatype =

CS_CHAR_TYPE. Use an ASCII text editor to edit the datafmt.datatype field to:

New Features for Adaptive Server Version 12.5 13-227

Adaptive Server version 12.5 Beta unichar datatype

...
strcpy (datafmt.name, “@charparam”);
datafmt.namelen =CS_NULLTERM;
datafmt.datatype = CS_UNICHAR_TYPE;
datafmt.maxlength = CS_MAX_CHAR;
datafmt.status = CS_RETURN;
datafmt.locale = NULL;
...

Since CS_UNICHAR is a UTF-16 encoded Unicode character
datatype that is stored in two bytes, the maximum length of
CS_UNICHAR string parameter sent to the server is restricted to
one-half the length of CS_CHAR, which is stored in one-byte format.

Table 13-2 lists the CS_DATAFMT bitmask fields.

Table 13-2: CS_DATAFMT structure

isql and bcp utilities

Both the isql and the bcp utilities automatically support unichar data if
the server supports two-byte character data.

If the client’s default character set is UTF-8, isql displays two-byte
character data, and bcp saves two-byte character data in the UTF-8
format. Otherwise, the data is displayed or saved, respectively, in
two-byte Unicode data in binary format.

Use isql -Jutf8 to set the client character set for isql. Use bcp -Jutf8 to
set the client character set for the bcp utility.

Limitations

The sever to which the Open Client/Open Server is connecting must
support two-byte Unicode datatypes, and use UTF-8 as the default
character set.

If the server does not support two-byte Unicode datatypes, the
server returns an error message: “Type not found. Unichar/univarchar

is not supported.”

Bitmask field Description

CS_FMT_NULLTERM The data is two-byte Unicode null-terminated (0x0000).

CS_FMT_PADBLANK The data is padded with two-byte Unicode blanks to the
full length of the destination variable (0x0020).

CS_FMT_PADNULL The data is padded with two-byte Unicode nulls to the
full length of the destination variable (0x0000).

CS_FMT_UNUSED No format information is provided.

13-228 New Features in Open Client/Open Server 12.5

New limits in version 12.5 Adaptive Server version 12.5 Beta

CS_UNICHAR does not support the conversion from UTF-8 to UTF-
16 byte format for CS_BOUNDARY and CS_SENSITIVITY. All other
datatype formats are convertible.

CS_UNICHAR does not provide C programming operations on
UTF-16 encoded Unicode data such as Unicode character strings. For
full support for Unicode character strings, you must use the Sybase
product, Unilab. See the Unilib Reference Manual at at

http://sybooks.sybase.com. The reference manual is part of the Sybase
Unicode Developers Kit 2.0.

New limits in version 12.5

Open Client/Open Server 12.5 allow client applications to send and
receive wider tables and larger page sizes that are supported in
Adaptive Server 12.5.

Larger pages – support for 2K, 4K, 8K, or 16K logical page databases.

Wide tables – for columns in excess of 255 characters, and more than
255 columns per table.

Client-Library applications compiled on earlier versions of Client-
Library must be recompiled with the Open Client/Open Server 12.5
libraries to enable the new limits.

Page size

Adaptive Server Enterprise 12.5 supports logical page sizes of 2K,
4K, 8K, and 16K. Open Client/Open Server uses the Bulk-Library
(blklib) routines to populate these pages. Until the release of 12.5, blklib

only supported the Adaptive Server page size of 2K.

Table 13-3 lists the new bulk library constants and their values.

Table 13-3: Page size values

Increased page size limits allow for increased number of columns,
depending upon the type of table. The limits are:

blk_pagesiz
e

blk_maxdatarow blk_maxcolsize blk_maxcolno blk_boundary

2K 1962 1960 1962 1960

4K 4010 4008 4010 4008

8K 8106 8104 8106 8104

16K 16298 16296 16298 16298

New Features for Adaptive Server Version 12.5 13-229

Adaptive Server version 12.5 Beta New limits in version 12.5

• 1024 for fixed-length columns in both all-pages locking (APL)
and data-only locking (DOL) tables

• 254 for variable-length columns in an APL table

• 1024 for variable-length columns in an DOL table

No changes have been made to the existing blklib APIs, nor have any
new APIs been added to accommodate the larger page size support
in Adaptive Server 12.5.

Compatibility

Support for large page size is automatically enabled if:

• The client is set to CS_VERSION_125 or higher,

• It is linked with Open Client Server 125 library, and

• The Adaptive Server to which it is connected has the capabilities
to handle wide tables:

 select @@version

If Open Client/Open Server 12.5 blklib is linked to a version 12.5 bcp

application that communicates with a pre-12.5 Adaptive Server, the
bcp utility assumes that Adaptive Server has the 2K page size.

If the blklib is linked to a bcp application that was built with a version of
the utility earlier than 12.5 (the version string is not set to
CS_VERSION_125), it cannot support the copy of large pages.

Wide tables

Adaptive Server Enterprise 12.5 supports tables with more than 255
columns and column sizes in excess of 255 characters or 255 binary
data. To accommodate the expanded table limits in Adaptive Server,
Open Client/Open Server 12.5 sends and receives wider tables and
tables with more columns.

Capability

To support wide tables, the client sends a login packet to the server
along with a capability packet. Possible ct_capability parameters
include:

• CS_WIDETABLE – a request capability that a client sends to the
server indicating the client has the capability to receive larger
data table formats.

13-230 New Features in Open Client/Open Server 12.5

New limits in version 12.5 Adaptive Server version 12.5 Beta

• CS_NOWIDETABLE – a response capability that a client sends to
the server to have the server disable wide table support for this
particular connection.

If the version of the application is set to CS_VERSION_125, the
Client-Library always sends CS_WIDETABLE capability to the
server; the application does not have control of the request capability.
However, the application can set CS_NOWIDETABLE response
capability before the connection is established to specifically request
the server not to enable wide table capabilities.

The syntax of ct_capability is:

CS_RETCODE ct_capability (connection, action, type,capability, value)
 CS_CONNECTION *connection;
 CS_INT action;
 CS_INT type;
 CS_INT capability;
 CS_VOID *value;

where the values of type are CS_WIDETABLES or CS_NOWIDETABLES.

If you do not want to enable wide table support, you can send the
server a CS_NOWIDETABLE command to disable this feature.

...
CS_BOOL boolv = CS_TRUE
...
 retcode = ct_capability (*conn_ptr, CS_SET, CS_CAP_RESPONSE,
 CS_NOWIDETABLES, &boolv);
...

ct_dynamic() with CS_CURSOR_DECLARE supports the flags
CS_PREPARE, CS_EXECUTE, and CS_EXEC_IMMEDIATE to
prepare and execute dynamic SQL statements that reference the
1024-column limit of Adaptive Server 12.5.

ct_param() can be used to pass as many as 1024 arguments to a dynamic
SQL statement.

Changes in application program

If the column data you are retrieving is in excess of CS_MAX_CHAR (256
characters or 256 binary data), you must edit the CS_DTATFMT structure
field datafmt.maxlength definition to the maximum length, in bytes, of the
data that you are retrieving. Otherwise you get a truncation error.

If you expect wider columns in the client program, change the
column array size in the application program.

For example, if the application expects a column that is 300
characters wide, then the column should mention CS_CHAR

New Features for Adaptive Server Version 12.5 13-231

Adaptive Server version 12.5 Beta New limits in version 12.5

col1[300] at an appropriate place. Assign an appropriate length-of-
character datatype, to the maxlength parameter of the CS_DATAFMT
structure for RPC applications if the column is more than 255 bytes.
The following is recommended for the CS_DATAFMT parameter:

datafmt.datatype = CS_CHAR_TYPE
datafmt.maxlength = sizeof(col1)

The following example is a small ctlib program using the pubs2

database.

1. Alter the authors table and a column “comment” declare as a
varchar(500):

1>alter table authors add comment varchar(500) null
2>go

2. Update the new column within the table:

1>update authors set comment = replicate (substring(state,1,1), 500)
2>go
/* This SQL command will update the comment column with a replicate of
500 times the first letter of the state for each row. */

3. Modify the example.h file to set the “new limits” capabilities.

#define EX_CTLIB_VERSION CS_VERSION_125

4. Update the exutils.h file and reset the MAX_CHAR_BUF to 16384
(16K).

5. Recompile and link ctlib using 12.5 headers and libraries.

6. Execute and test on a Adaptive Server version 12.5 Xk page size
server.

If you set CS_VERSION_125, you see the following (only
displays the last 2 rows):

Heather McBadden
95688 CCCCCC
CCC
CCCCCCCCC
CCC
CCCCCCCCC
CCC
CCCCCCCCC
CCC
CCCCCCCCC
CCC
CCCCCCCCC
CCC
CCCCCCCCC
CCCCCCCCCCCCCC
Anne Ringer

13-232 New Features in Open Client/Open Server 12.5

New limits in version 12.5 Adaptive Server version 12.5 Beta

84152 UUUUUU
UUU
UUUUUUUUU
UUU
UUUUUUUUU
UUU
UUUUUUUUU
UUU
UUUUUUUUU
UUU
UUUUUUUUU
UUU
UUUUUUUUU
UUUUUUUUUUUUUU

7. Update the example.h file and reset ctlib to CS_VERSION_120.
Recompile and link using OCS-12_5 headers and libraries.

➤ Note
If you execute the same program without setting CS_VERSION_125 first,

you retrieve only the first 255 bytes of the comment column and cannot

retrieve wide columns, even if you are using version 12.5 of Adaptive Server

and OCS-12.5 libraries.

Open Client message:

Message number: LAYER = (1) ORIGIN = (4) SEVERITY = (1) NUMBER = (132)
Message String: ct_fetch(): user api layer: internal common library
error: The bind of result set item 4 resulted in truncation.
Error on row 21.
Heather McBadden
95688 CCCCCC
CCC
CCCCCCCCC
CCC
CCCCCCCCC
CCC
CCCCCCC

Open Client message:

New Features for Adaptive Server Version 12.5 13-233

Adaptive Server version 12.5 Beta New limits in version 12.5

Message number: LAYER = (1) ORIGIN = (4) SEVERITY = (1) NUMBER = (132)
Message String: ct_fetch(): user api layer: internal common library
error: The bind of result set item 4 resulted in truncation.
Error on row 22.
Anne Ringer
84152 UUUUUU
UUU
UUUUUUUUU
UUU
UUUUUUUUU
UUU
UUUUUUU

Wide-table compatibility

Wide-table support is activated automatically if:

• The client is set to CS_VERSION_125,

• It is linked with Open Client Server 12.5 library, and

• the Adaptive Server to which it is connected has the capabilities
to handle wide tables.

If the Client-Library application’s version string is not set to
CS_VERSION_125, and it is linked to an Open Client/Open Server
12.5, the application does not support the extended limits and there
is no behavioral change.

If the Open Client/Open Server version 12.5 connects to a pre-12.5
Adaptive Server, the server returns a capability bit of 0, indicating
that it does not support wide tables; the connection is still made but
there are no behavioral changes.

Likewise, if a pre-12.5 version of Open Client/Open Server connects
to an Adaptive Server 12.5, the new limits are not enabled. However,
if the Adaptive Server determines that it must send a wide-table
format to an older client, the data is truncated and sent.

➤ Note
Adaptive Server 11.0.x and SQL Server return a mask length of 0 for any

mask length in excess of 7 bytes. If the connection request receives a

capability mask of 0, you see this error message:

ct_connect(): protocol specific layer: external error: “This
server does not accept new larger cpability mask, the original
cap mask will be used.”

and the extended limits are not enabled.

13-234 New Features in Open Client/Open Server 12.5

Implicit Cursors Adaptive Server version 12.5 Beta

Implicit Cursors

Implicit cursors are designed for Open Client applications that
perform multiple single-row fetches. Implicit cursors reduce the
number of context switches performed by the server, decreasing
network traffic and increasing the performance of client applications
performing multiple, single-row fetches.

There is no external configuration required to implement implicit
cursors. The cursor in a client application sends the cursor declare
statement:

ct_cursor (cmd, CS_CURSOR_DECLARE, cur_name ,
 CS_NULLTERM, QUERY_TEXT, CS_NULLTER,
 CS_IMPLICIT_CURSOR);

When the server receives a CS_CURSOR_OPEN command as an
implicit cursor type, the server fetches the rows and sends them to
the client, repeating the process until it sends all the rows—without
any further requests from the client. When the server encounters the
last row in a fetch, it closes the cursor and sends cursor closed
information to the client.

Compatibility

If an Open Client/Open Server application version string is set to
CS_VERSION_125, it sends a declaring cursor of type
CS_IMPLICIT_CURSOR. If the receiving Adaptive Server version
string is VERSION_125, the implicit cursor option is transparently
enabled.

If either the receiving Adaptive Server or the requesting Open Client
application does not have the version string set to VERSION_125, the
implicit cursor functionality is not enabled, and there is no
behavioral change in the application.

Limitations

When an implicit cursor issues a fetch command, the server retrieves
all rows that match the fetch statement criteria and places the result
set in a cache. For this reason, any insertions of new rows that match
the criteria are not included in the active result set unless the
connection has not yet received the cursor closed information.

The result set of a ct_fetch with an implicit cursor type is read-only.

